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Abstract
Large Language Models (LLMs) are rapidly sat-
urating existing benchmarks, necessitating new
open-ended evaluations. We introduce the Fac-
torio Learning Environment (FLE), based on the
game of Factorio, that tests agents in long-term
planning, program synthesis, and resource opti-
mization. FLE provides exponentially scaling
challenges—from basic automation to complex
factories processing millions of resource units per
second. We provide two settings: (1) lab-play
consisting of 24 structured tasks with fixed re-
sources, and (2) open-play with the unbounded
task of building the largest factory on an proce-
durally generated map. We demonstrate across
both settings that models still lack strong spa-
tial reasoning. In lab-play, we find that LLMs
exhibit promising short-horizon skills, yet are
unable to operate effectively in constrained en-
vironments, reflecting limitations in error analy-
sis. In open-play, while LLMs discover automa-
tion strategies that improve growth (e.g electric-
powered drilling), they fail to achieve complex
automation (e.g electronic-circuit manufacturing).
We release FLE as an open-source platform1.

1. Introduction
Large Language Models (LLMs) have demonstrated remark-
able capabilities at solving complex question-answer (QA)
problems, saturating benchmarks in factual recollection
(Hendrycks et al., 2021), reasoning (Cobbe et al., 2021)
and code prediction (Chen et al., 2021).

The strong performance across these diverse tasks suggests
that LLMs have developed sophisticated reasoning capa-
bilities, leading researchers to explore whether models can
act as autonomous agents (Yang et al., 2023). This has
motivated a number of new agentic benchmarks focusing
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Figure 1. A plastic bar factory created by Claude 3.5 Sonnet
in lab-play. The factory consists of a electricity steam generator
(top-left), a coal mine (top), a crude-oil to petroleum gas pipeline
(bottom) and a chemical plant (bottom-right). The chemical plant
creates plastic bars using the coal and petroleum gas as inputs. By
themselves, the cumulative raw resources generate a production
score of 224. With this specific layout, the factory creates 40
plastic bars per 60 in-game seconds, for a production score of 352.

on long-term planning (Liu et al., 2023; Ruan et al., 2023),
learning in complex environments (Paglieri et al., 2024;
Jimenez et al., 2023) and reliably learning from mistakes
(Xing et al., 2024; Yamada et al., 2023; Kambhampati et al.,
2024). However, similar to QA settings, these agentic bench-
marks are likely to face saturation due to their natural com-
pletion states; which impose an upper bound on performance
and limit our ability to differentiate superhuman models.

We introduce the Factorio Learning Environment (FLE):
a novel evaluation framework built upon the game of Fac-
torio that uniquely addresses this limitation by enabling
unbounded agent evaluation with no natural completion
state. In this environment, agents must navigate rapidly
scaling challenges from basic resource gathering to com-
plex automation while managing an exponentially scaling
technology tree - creating natural curricula for evaluating
increasingly capable agents.

Agents are tasked with producing the largest possible fac-
tory, whose performance is measured through production
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throughput, which ranges from early-game rates of ∼30
resources/minute to advanced systems processing millions
of resources/second. This enables us to meaningfully differ-
entiate agents by measuring the order of magnitude of re-
sources that they can produce, avoiding saturation by agents
even as models become dramatically more capable.

Existing resource management environments such as
Minecraft (Guss et al., 2019) or Nethack (Küttler et al.,
2020) do not demand the precise industrial optimization
present in Factorio. For resource processing chains, produc-
ing basic electronic circuits (an early-game staple) requires
coordinating 10+ machines processing approximately 15
items per minute. For example, a single rocket component
requires orchestrating 60+ interlinked machines manufac-
turing 1000+ items per minute. The precision required,
where a single misaligned machine can cause a factory-wide
gridlock, creates a natural curriculum, testing both basic
automation and advanced system optimization.

Agents interact with the FLE via synthesizing Python pro-
grams to alter and observe the game state, using the tools
included in the environment in a Read-Eval-Print Loop
(REPL). This feedback loop mirrors the day-to-day work-
flow of human programmers, who write provisional code
to probe how systems behave, interpret the results, then
refine their mental model of the system. In this sense, the
agent’s program acts as the cumulative representation of its
current knowledge and strategies for managing the complex
resource pipelines in Factorio.

We evaluate six frontier LLM models in this environment in
an agentic setting. In our qualitative analysis, we study the
agents capabilities for spatial reasoning, long-term planning,
and error correction. Our results show that even the most
advanced models struggle to coordinate more than six ma-
chines when automatically producing items with over three
ingredients, even after 128 environmental interactions.

We summarise our contribution as follows:

• The introduction of the Factorio Learning Environ-
ment, an agentic evaluation of long-term planning and
resource management and allocation.

• Evaluations of frontier models in FLE lab-play, a set
of 24 controlled tasks requiring agents to build fac-
tories with increasing levels of complexity and scale.
Claude-3.5-Sonnet (the strongest performing model)
only completes 7/24 tasks and shows limitations in
spatial planning in more complex objectives; demon-
strating large head-room for performance.

• Evaluation of frontier models in the FLE open-play, an
unbounded setting in a full Factorio game map. We find
more capable agents who invest heavily into technolog-
ical research and advancements achieve quantitatively

different slopes on a log-reward, log-step graph.

• A qualitative analysis of the results across capabilities
such as error-correction and long-term planning. We
identify a gap in models’ ability to perform intelligent
error correction, iteratively build upon prior work and
conduct exploration.

2. Factorio Learning Environment
Our main contribution is the release of an open-source
framework, which includes i) a high-level Python API to
Factorio, ii) a persistent coding environment for LLM agents
to interact with the game through iterative program synthe-
sis, and iii) a Python object model of game entities.

The environment is procedurally generated, deterministic at
runtime (set by a random seed) and is 4×1012 square tiles in
size. We provide a laboratory environment with accessible
resources for benchmarking agents in a controlled setting.

2.1. Environment Dynamics

Factorio is a resource management and automation game in
which players spawn on a world containing raw resources
such as water, iron ore, and coal, and must orchestrate in-
creasingly complex production and logistic chains to ulti-
mately produce a rocket and (optionally) escape. The game
contains over 200 entity types, with a technology tree that
unlocks more efficient buildings, resource production chains
and multiplicative throughput bonuses. Research enforces
a steep resource progression, with late-game technologies
such as the rocket-silo demanding 300 times more
resources than early automation research2.

Player strategy and factory architecture evolves dramati-
cally as technology progresses. The early game centres on
manual crafting and basic automation, with factories daisy-
chained together using direct insertion between machines.
These designs are primarily constrained by manual building
speed and resource gathering, favouring cheap, immediate
solutions -e.g stone-furnaces provide better returns
on investment than steel-furnaces until fast-belt tech-
nology (logistics-2) is available. As they progress,
players typically adopt main bus designs with centralized
resource production and distribution, enabling more orga-
nized scaling of production. Late-game strategy shifts again,
toward massive parallel construction and logistics networks,
with factories ultimately evolving into distributed complexes
connected by high-capacity train networks. These advanced
stages emphasize space-efficient, high-throughput designs
enabled by technologies like beacons and stack inserters,

2This progression approximately follows an unbounded geo-
metric relationship between resource cost C and research tier N –
C[N ] = 1000× 2(N−1)
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Figure 2. Illustration of the Factorio Learning Environment (FLE). FLE is based on the popular construction and management
simulation game Factorio. Left: The open-ended goal of the game is to create the largest factory possible. The game enables agents to
invest in (an infinite number of) technological advances to produce more resources per second. Middle: Agents interact with the game
by using an interactive Python Interpreter, where they take actions and print their observations in a Read-Eval-Print loop. By using the
Python namespace, agents may store variables and define functions for later use. We provide a Python API to Factorio which allows direct
interaction with the environment. Right: The agent may issue commands to the game server in order to interact with the environment
(with associated time penalities), and receive a response as feedback. If the agents chooses, it may view its own production statistics.

1 # 1. Get iron patch and place mining drill
2 drill = place_entity(
3 entity=Prototype.MiningDrill,
4 position=nearest(Resource.IronOre)),
5 direction=Direction.NORTH
6 )
7 # 2. Add output storage
8 chest = place_entity_next_to(
9 entity=Prototype.IronChest,

10 reference_position=drill.drop_position,
11 direction=Direction.SOUTH
12 )
13 # 3. Verify automation chain and observe entities
14 assert drill.status == EntityStatus.WORKING
15 print(get_entities())

Figure 3. Example of an FLE program used to create a simple
automated iron-ore miner. In step 1 the agent uses a query to find
the nearest resources and place a mine. In step 3 the agent uses an
assert statement to verify that its action was successful.

and are thousands of times larger than early game factories.

2.2. Environment Interface

Agents interact with FLE through a REPL (Read-Eval-Print-
Loop) pattern, observing the current game state via previ-
ous program output streams, then generating and executing
Python code to implement their intended actions, and finally
returning useful feedback for the next iteration.

Agents are provided with the Python standard library, and
an API comprising methods designed to balance expressive-
ness with tractability (see Appendix D.1). These comprise
10 observation methods and 13 action methods. Obser-

vation methods (e.g nearest, get entities) retrieve
information about the environment, and action methods (e.g
move to, craft entity) modify the environment.

Each method returns a typed object (e.g an Inventory)
which can be stored as a variable in the Python namespace
and referenced later in the episode. The namespace acts as
an episodic symbolic memory system, and saved objects
represent part of the environment at the moment of query,
becoming stale as the game state evolves, requiring the
agent to re-query when appropriate. This design enables
agents to maintain complex state representations and build
hierarchical abstractions as the factories scale.

Agents observe stdout and stderr - the output streams of
their program. Thus, agents may intentionally print relevant
objects and computations to the output stream to construct
observations. Selecting relevant attributes of objects enables
token-efficient observation, e.g:

1 # Observe the status of all Furnaces in-game
2 print([e.status for e in

get_entities({Prototype.StoneFurnace})}
3 >>> 2: ’WORKING’, ’WORKING’, ’NEED_INGREDIENTS’,
4 ’OUT_OF_FUEL’

Mistakes in the code or invalid operations raise typed ex-
ceptions with detailed context that is written to stderr. This
enables agents to reactively debug their programs after exe-
cution, and proactively use runtime assertions during execu-
tion to self-verify their actions. Programs that take too long
to execute are terminated, to prevent runaway control flows
(e.g while True).
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Figure 4. Models are differentiated by score in Open-Play. Agents are given the instruction to build the biggest possible factory. Left:
We find that by evaluating PS against steps (server calls) we can clearly differentiate stronger models from weaker ones in a log/log
projection. We overlay milestones, showing the first time the median agent was able to create a new type of entity. Right: We plot the final
reward and elapsed game time after 5k steps. We find that while weaker models show promise early-game, they struggle to progress when
automation and logistics are required. We report median and standard error over the independent runs.

An environment “step” is a single submission to the Factorio
server, which returns the stdout, stderr, rewards and in-game
wall-clock time (see Figure 2).

Agents are able to enhance their internal representation of
the game state in 2 ways: (i) they can define utility functions
for reuse throughout an episode, to encapsulate successful
logic; and (ii) they can define classes in the namespace to
better organize the data retrieved from the game.

2.3. Reward Structure

We use Factorio’s built-in production tracking system, which
enables us to define two complementary reward signals:

Production Score (PS): A continuous measure of economic
activity based on the value of all items produced. This met-
ric increases as agents refine raw ores into manufactured
goods and create automatic factories. As production chain
throughput scales exponentially, PS can vary by multiple
orders of magnitude (a rocket launch requires ≈ 107 raw
resources). PS provides a naturally unbounded measure of
performance, which is sensitive to increasing automation
complexity. The game’s price calculation system assigns
higher value to items with more complex production chains,
creating a reward structure that encourages sophisticated fac-
tory designs. For the full pricing system, see Appendix A.

Milestones: A discrete set of achievements for producing
novel item types (e.g. building an inserter for the first
time, assembling electronic-circuits, etc.) and
researching technologies. This captures both the diversity
of an agent’s exploration across Factorio’s tech tree, and
what level of item complexity they were able to achieve. As
Factorio supports researching an infinite technologies (with
multiplicative bonuses), milestones can be used to measure
performance at all levels of capability.

2.4. Implementation Details

The FLE comprises a Python client and Lua server commu-
nicating synchronously via RCON over TCP3. The client
provides the stateful environment interface and APIs, while
the server manages game state execution in the official Fac-
torio multiplayer server. The server can be run in headless
mode for efficient parallelization. The object model repre-
sents most early to late-game entities (detailed in Appendix
D.1). FLE is compatible with v1.110 of Factorio, and re-
quires a single purchased game license, as each server must
be “activated” by any official client at startup. FLE is also
easily extensible by the community. Designing new tools
requires implementing a client-side controller (Python) and
a server-side action (Lua) which will automatically load and
update the API schema for subsequent agent runs.

We benchmark the Factorio Learning Environment on a
MacBook Pro M4 with 128GB RAM. The headless server
achieved the highest throughput, processing an average of
218 operations per second across core API functions, with
peak performance of 603 ops/sec for basic operations like
crafting. The Python interpreter introduces approximately
3x overhead, reducing average throughput to 68 ops/sec.
Complex spatial operations (connect entities) are
consistently the slowest at 25-48 ops/sec due to pathfinding
requirements. Basic inventory operations (craft item,
extract item) achieve highest throughput at 276-545
ops/sec. The headless configuration provides a 1.75x speed-
up over the game client (see Figure 11). We make the
environment publicly available 4 .

3Roughly 80k LoC in total
4https://github.com/JackHopkins/factorio-learning-

environment
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3. Experiments
To evaluate agent capabilities in FLE, we introduce two
settings and a novel agent scaffolding.

3.1. Settings

Lab Play - requires the agent to create a factory with a spe-
cific production throughput in the constrained lab environ-
ment. These tasks are designed to evaluate the capabilities
of an agent to create automatic structures in an open-ended
manner, requiring creativity, spatial understanding of the
map and long-horizon planning.

We task agents to build fully automatic production lines
of 24 distinct target entities of increasing complexity, start-
ing from a single resource mine requiring at most 2 ma-
chines (making iron-ore) to a late game entity requir-
ing the coordination of close to 100 machines (making
utility-science-pack). The target entities cover
items from early to late game and the agent must use a
wide variety of machines present in Factorio (drills, fur-
naces, assembling machines, oil refineries, chemical plants).
As the task difficulty naturally increases with resource re-
quirements of target entities this provides a measure of the
complexity agents are capable of creating in a limited num-
ber of steps. All tasks start with an inventory containing
sufficient entities to complete the task and all research is
unlocked for the agent in lab-play. Additional information
is in Appendix G.

Each task runs a trajectory of 128 API calls. After every
agent step, the throughput of the created structure is evalu-
ated throughout a 60 second holdout period in-game, and the
task is deemed completed if the throughput of the structure
is above the target throughput at any step i. All successful
production lines were manually examined to guard against
reward hacking (for instance, agent manually inputting in-
gredients into an assembler as opposed to creating an au-
tomatic connection). The target throughput is 16 for solid
items (for instance electronic circuit, military science pack,
plastic bar) and 250 for fluids (for instance petroleum gas,
lubricant, heavy oil) during the holdout period. We report
the mean success rate of each task with 8 runs per task.

Open Play - In addition to the structured lab-play tasks,
we evaluate each agent in a purely open-ended setting. The
agents spawn into a procedurally generated world with un-
bounded space and resources, and are tasked to “build the
largest factory possible”, allowing the agents to decide how
best to advance in the game. To progress long-term, agents
must show proficient long-term goal-setting, entity and re-
source planning and spatial reasoning capabilities when
creating automation structures. Agents must be capable of
using the API, querying the environment for unknown infor-
mation and reasoning over observations to plan successfully.

We use two metrics to evaluate progress in the game: Pro-
duction Score (PS) and Milestones. While the PS acts as the
reward and is affected by exploitation, milestones give an
overview of how much of the game and technology tree the
agent has explored.

Each agent plays until the maximum trajectory length of
5000 is reached. After every agent step, the production
throughput is tracked and reward computed. We execute 8
independent runs for each agent, and report the median.

3.2. Agent Scaffolding

We consider a simple step-by-step prompting approach as
a baseline implementation for agents to interact with the
environment. The input prompt of the agent consists of the
API schema A, a guide G describing how to use the API
tools with code examples and the memory M of the agent
consisting of past policies with environment observations.
A detailed description for the guide, API schema and an
example memory state is brought out in Appendix I. Given
the inputs, the agent is tasked to identify the most useful
next step and generate the Python policy P that carries
out actions in the environment to achieve the step. The
policy is executed in the environment and added to the
memory M with the environment observations (stdout) and
error messages (stderr). The updated memory M is then
used as input to generate the next policy and enables the
agent to gather information from the environment and use
observations to guide future step generation.

Memory - At every policy generation step the agent uses
information from the memory M . Memory consists of
past policies and their respective environment observations
(stdout and stderr after every policy execution). To limit the
memory token count, past observations and policies that are
further than 16 steps in the past are summarised into a report
of 1024 tokens. This allows the agent to execute arbitrarily
long traces in the environment without unreasonably large
memory input token requirements.

Language Models - We evaluate state-of-the-art closed
source models including Claude 3.5-Sonnet (Anthropic,
2024), GPT-4o and GPT-4o-Mini (OpenAI et al., 2024),
Deepseek-v3 (DeepSeek-AI et al., 2025) and Gemini-2-
Flash (Team et al., 2024). We also evaluate Llama-3.3-
70B-Instruct (MetaAI, 2024). Each model is sampled at
temperature 0.5. Model timestamps are in Appendix E.

4. Results
We analyse agent performance during open-play and lab-
play, and observe common patterns amongst trajectories
from both settings. We report experimental costs in Table 3.

Insight 1: Coding agents perform better in the FLE.
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Figure 5. Agents are unable to consistently build complex and efficient factories in Lab-Play. Top: We measure the mean and standard
deviation of task success rates across the first 8 complexity levels. We observe a clear decrease in average task success rates as the crafting
complexity of the target entity increases. Bottom: We show the mean and std of task progress (percentage of target ingredients and
its sub-ingredients agents factories produce at each time-step) in three tasks of increasing difficulty accross 8 runs per task. In harder
tasks, agents show trends of initial rapid progress followed by stagnation or decrease. This is due to agents being unable to scale up
initial production or add new sections to factories required to successfully reach the target production levels and often breaking existing
structures during the process. The lack of consistent progress is also observed through the large variance in task progress across runs.

We find that stronger coding agents achieve higher pro-
duction scores across both settings. In open-play, Claude
outperforms other models in both median PS (293 206) and
milestone count (28), surpassing the early-game resource ex-
traction phase and partially investing in technology research
- constructing and powering a lab, dedicating production
to science-packs and unlocking electric inserters,
(see Figure 6). In comparison Llama-3.3-70B (54 998 PS,
26 milestones) made initial progress but did not develop
production lines of >3 entities and struggled with both cre-
ating complex structures and scaling up existing production.
Similarly in lab-play, Claude performed the best, managing
to create automatic structures typically seen in Factorio’s
early game; specifically, compact drilling lines coordinating
10+ machines across up to four factory sections (see table 1).
In comparison, Llama-3.3-70B is capable of only creating
the most trivial of factories.

Insight 2: Agents lack spatial reasoning and are un-
able to iteratively improve on factories. A key char-
acteristic for success in open-play and lab-play involves
iteratively combining multiple factory sections to create
complex production lines. In open-play, while Claude
was able to scale up automation from the early-game,
GPT-4o, GPT-4o-Mini and Llama-3.3-70B typically suc-
ceeded only at maintaining a small number of production
lines. In lab-play, it can be seen how the success rate of
tasks decreases proportionally to the increase in crafting

recipe complexity of the target entity (see Figure 5). For
instance, creation of automation science packs requires
multiple mining and smelting sections (iron-plate
and copper-plate), a iron-gear-wheel assembly
section, automation-science-pack section and a
steam-engine. While agents are able to make initial
progress in this task by creating electricity setups and plate
production lines, they are unable to improve on the factory
and add the required assembly sections. Frequent failure
cases were trying to place entities too close or on-top of
each other, not leaving room for connections or incorrect
placement of inserters. These are all limitations in spatial
reasoning and result in agents only being able to consistently
create production lines for low complexity items and low
overall performance in lab-play tasks (see Table 1).

Insight 3: Agents use the API in different ways. We eval-
uate trajectories with automatic checkers to evaluate how
successful models are at using the FLE API. We find that
models exhibit different coding styles, with GPT-4o using
more assert checks in within their code than Claude 3.5.
Conversely GPT-4o uses significantly fewer prints. These
suggest models use very different approaches to explore and
engage with the FLE. Using prints suggests being uncertain
of state, and exploring new areas, whereas assert statements
are likely used to clarify existing knowledge (see Table ??).

Insight 4: Planning is essential to open-play perfor-
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Figure 6. Open-ended challenges highlight differences in objective setting and general capability. We illustrate the rates at which
various models produce items with multiple antecedent ingredients in the open-play setting. Claude 3.5-Sonnet immediately begins
complex crafting and invests in research, ultimately unlocking electric-mining-drills at step 3k, the deployment of which
boosts production of iron-plate thereafter. Less advanced models, like GPT-4o-Mini, produce insignificant quantities of multi-
ingredient items. Deepseek produced fewer complex resources in open-play than its lab-play performance would suggest, indicating
weaker objective-setting compared to general capability in-game.

Model Lab-play task success rate (%)

Claude 21.9
GPT-4o 16.6
Deepseek-v3 15.1
Gemini-2 13.0
Llama-3.3-70B 5.2
GPT-4o-Mini 4.2

Table 1. Stronger coding models achieve higher task success
rates in Lab-Play. We observe a correlation between coding and
reasoning abilities of base models and the task success rates, where
the stronger models have higher success rates in lab-play tasks.
Claude, GPT-4o, Deepseek and Gemini-2 are able to only pass
simpler tasks requiring the construction of factories consisting up
to 3 sections while Llama-3.3-70B and GPT-4o-Mini succeeded
in tasks requiring single-section factories. All models struggled
with the increasing scale and complexity requirements for tasks
resulting in low overall success rates.

mance. In open-play, agents are given an open-ended goal
and need to create meaningful sub-objectives themselves to
make long-term progress. We observe that agents often set
short-sighted objectives, for instance manually crafting a
large quantity of singular entities without a long-term plan
(Gemini-2.0 manually crafted 300+ wooden chests over 100
steps), not significantly investing into research (except for
Claude) or creating small individual factories as opposed to
scaling up existing production. This creates a discrepancy
between lab-play and open-play results where in lab-play
Gemini-2 and Deepseek show capabilities in creating early-
game automation (see Figure 5) but rarely attempt creating
factories in open-play, resulting in poor complex entity craft-
ing statistics (See Figure 6) and lower production scores.

Insight 5: Agents which invest in technological progres-
sion achieve much higher PS. Investing into technology
progress in open-play is a trade-off, where agents incur a
short-term resource cost to unlock items enabling long-term
higher throughput. Although research is crucial for creating
higher efficiency factories, only Claude consistently invests
resources into researching new technologies in open-play.
The result can be seen from step 3k, where Claude starts
deploying electric-mining-drills and PS grows
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Model L P% A% F% AF% C% En%

Claude-3.5 65 43.3 2.0 50.6 0 3 97
GPT-4o 81 10.3 12.8 10.2 2 12 86
DeepSeek-v3 37 25.4 13.9 25.3 0 2 98
Gemini-2 133 16.2 0.0 16.6 1 46 53
Llama-3.3-70B 38 23.9 12.9 23.7 0 24 76
GPT-4o-Mini 77 36.0 0.0 31.6 15 6 79

Table 2. Models exhibit contrasting coding styles: Analysis of
code submitted by different language models, showing average
lines per program (L), percentage of lines that were print state-
ments (P%), percentage of lines that were assertions (A%), and
percentage of programs that failed (F%). For programs that failed
by error type we track the proportion of assertion fails (AF%), code
errors (C%), and environment errors (En%). Claude-3.5 favours
a REPL approach with high print usage and failure rates, while
GPT-4 opts for defensive programming with assertive validation
and fewer resulting environmental errors. Gemini-2 produces the
longest programs (133 lines on average) but makes the most code
errors (e.g accessing non-existent variables).

by a factor of 1.5x (from 200k to 300k), in Figure 6.

Insight 6: Agents fall into degenerate debug loops. A
critical component for successful runs was an agents’ ability
to interact to previous error logs and carry out error cor-
rection. In lab-play, in successful task completions, 56%
of steps resulted in program execution errors (from which
agents recovered), and in open-play ranged from 29.7% to
76.4%. Claude, GPT-4o and Deepseek were capable of sim-
pler error correction when incorrectly using the API or when
crafting entities. Anecdotally, the agents were not proficient
at debugging complex environments. For instance, when
debugging non-working structures or factories where the
throughput was not at expected levels, agents often focused
on whether all singular entities were working but did not
investigate whether the topology of the whole structure was
correct. In lab-play, this limitation is illustrated by the fre-
quent decrease of task performance across steps in Figure 5
where the agents broke existing working structures due to
incorrectly identifying the root-cause of problems. Agents
often fell into a loop of greedily repeating the same fix rather
than exploring additional potential sources of the problem.
This can be seen in the flatline behaviour during open-play
in Figure 4 with no PS progression. For instance, in one
run GPT-4o used the same API method incorrectly for 78
contiguous steps (from Step 120), receiving identical error
message each time. On two occasions, GPT-4o-Mini simply
gave up and repeatedly asked to be reset - see Appendix F.

These limitations show the difficulty of FLE and that state-
of-the-art LLMs—even with REPL-style feedback and ex-
tensive prompting—are still in the early stages of mastering
large-scale, open-ended factory design.

5. Related Work
Games have long served as fundamental benchmarks for
artificial intelligence research, providing standardized en-
vironments with clear metrics, rich observational data, and
natural difficulty gradients. (Campbell et al., 2002; Silver
et al., 2016; Berner et al., 2019).

Recent work has explored using LLMs as game-playing
agents. Environments like ALFWorld (Shridhar et al.,
2020) combine language understanding with embodied
tasks, while MineDojo (Fan et al., 2022) leverages Minecraft
as a sandbox for testing general-purpose agents through
3,000+ diverse tasks spanning survival, harvesting, and cre-
ative building. While these environments excel at eval-
uating breadth of capabilities, their fundamentally linear
progression systems limit their ability to differentiate highly
capable agents. Even with rich task suites, their resource re-
quirements remain relatively modest compared to Factorio’s
exponential scaling.

Many benchmarks exist for agentic coding such as (Jimenez
et al., 2023; Hendrycks et al.), which evaluate Python
against a stateful system. These benchmarks often involve
fitting specific test conditions, or task descriptions. In com-
parison, our win condition is open-ended, requiring multi-
step planning and resulting in thousands of submissions;
requiring much longer contexts than other benchmarks.

Management simulation games like OpenTTD (Ope) have
explored aspects of resource optimization, but lack precise
mechanics and exponential scaling that would enable quan-
titative measurement of small improvements in agent capa-
bilities. Text-based environments like Jericho (Hausknecht
et al., 2019) test language understanding through interactive
fiction, but lack the spatial reasoning and timing require-
ments inherent in factory design.

Factorio has seen prior research interest for closed-domain
settings (Reid et al., 2021), with a focus on integer program-
ming models, meta-heuristics and evolutionary reinforce-
ment learning to tackle logistics challenges. We build on this
foundation to offer a standardized text-based interface for
learning agents to solve open-ended challenges in long-term
planning, spatial reasoning and factory optimization.

6. Limitations, Future Work & Conclusion
In this work, we introduce the Factorio Learning Environ-
ment (FLE), a novel open-ended framework for evaluating
the capabilities of agents in an open-ended environment.

A major concern for any environment benchmark is reward
hacking (Clark & Amodei, 2016; Skalse et al., 2022). In our
setting this could involve two main attack surfaces: either
through Python API (as seen within Denison et al. (2024))
or within the Factorio game-engine itself. During our eval-
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uations, while we observed no direct examples of reward
hacking of either interface, we did observe that the agent
was able to occasionally trigger resetting the Factorio games-
tate; That said, we applied little optimisation pressure on
agents - we highlight this as a caution for those developing
agents on FLE.

Secondly, unlike the base game of Factorio, which uses
mouse and screen, our approach involves a Python inter-
face. Whilst the authors were, in equivalent game time,
able to outperform frontier agents, it is unclear if achieving
end-game goals (e.g. escape the world or build rockets) is
achievable to humans using only an API in a reasonable
time-frame. We did however prove that each step in the
chain to launch a rocket was achievable from the previous
step and that all tasks in lab-play can be completed.

Even without human baselines, we believe that FLE is a
useful benchmark, as the comparative scores between agents
still informs us of their relative ability at planning, spatial
reasoning and resource management.

Currently, some mid and late-game entities are not explicitly
modelled in FLE (specifically trains, logistics robots and
agent-programmable circuit networks). This is appropriate
given the state of evaluated models. As FLE is open-source,
we are committed to release a complete object model with
first-class support for all entities.

Although all our current experiments use single-agent inter-
action, Factorio inherently supports multi-player games in
both cooperative and competitive scenarios. For instance,
multiple agents could share a base, coordinating research
and logistics, or they could spawn in distant regions and
compete for finite resources (e.g., high-yield iron patches).

The unbounded nature of FLE provides a benchmark that
will remain relevant even as progress in LLMs continues to
advance. Unlike traditional benchmarks that are rapidly sat-
urated by progress in AI research, FLE’s exponentially scal-
ing reward system and requirement for capabilities across
multiple areas create a natural curricula that can meaning-
fully differentiate between increasingly performant models.
Through our evaluation, we demonstrate that even state-of-
the-art agents struggle with the coordination and optimiza-
tion challenges inherent in simple automation and logistical
tasks. The limitations we observed in spatial reasoning,
long-term planning, and intelligent error correction high-
light gaps in capabilities of foundation language models in
novel environments.

Impact Statement
The Factorio Learning Environment provides a novel, open-
source testbed for exploring advanced AI behavior in a
complex, open-ended setting. It enables rigorous empirical

study of the instrumental convergence hypothesis and other
AI safety concerns. Researchers can measure how agents
balance resource acquisition, territorial expansion, and de-
fense, offering early indicators of convergent behaviors and
potential risks. Moreover, Factorio’s diverse automation
challenges allow systematic comparisons of agent architec-
tures and interventions, fostering reproducible research at
scale. We hope this platform accelerates empirical safety
investigations and strengthens the connection between theo-
retical predictions and real-world AI behavior.

References
OpenTTD: Transport simulation game. https://www.
openttd.org/. Accessed: 2025-01-07.

Anthropic. Claude 3.5 sonnet: Enhanced intelligence and
versatility, 2024. URL https://www.anthropic.
com/news/claude-3-5-sonnet. 20241022-v2:0
version.

Berner, C., Brockman, G., Chan, B., Cheung, V., Debiak, P.,
Dennison, C., Farhi, D., Fischer, Q., Hashme, S., Hesse,
C., et al. Dota 2 with large scale deep reinforcement
learning. arXiv preprint arXiv:1912.06680, 2019.

Campbell, M., Hoane, A. J., and Hsu, F.-h. Deep Blue.
Artificial Intelligence, 134(1–2):57–83, 2002. doi: 10.
1016/S0004-3702(01)00129-1.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. D. O.,
Kaplan, J., Edwards, H., Burda, Y., Joseph, N., Brockman,
G., et al. Evaluating large language models trained on
code. arXiv preprint arXiv:2107.03374, 2021.

Clark, J. and Amodei, D. Faulty reward functions in the
wild. Internet: https://blog. openai. com/faulty-reward-
functions, 2016.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., et al. Training verifiers to solve math word problems.
arXiv preprint arXiv:2110.14168, 2021.

DeepSeek-AI, Liu, A., Feng, B., Xue, B., Wang, B., Wu, B.,
Lu, C., Zhao, C., Deng, C., Zhang, C., Ruan, C., Dai, D.,
Guo, D., Yang, D., Chen, D., Ji, D., Li, E., Lin, F., Dai,
F., Luo, F., Hao, G., Chen, G., Li, G., Zhang, H., Bao,
H., Xu, H., Wang, H., Zhang, H., Ding, H., Xin, H., Gao,
H., Li, H., Qu, H., Cai, J. L., Liang, J., Guo, J., Ni, J., Li,
J., Wang, J., Chen, J., Chen, J., Yuan, J., Qiu, J., Li, J.,
Song, J., Dong, K., Hu, K., Gao, K., Guan, K., Huang,
K., Yu, K., Wang, L., Zhang, L., Xu, L., Xia, L., Zhao,
L., Wang, L., Zhang, L., Li, M., Wang, M., Zhang, M.,
Zhang, M., Tang, M., Li, M., Tian, N., Huang, P., Wang,
P., Zhang, P., Wang, Q., Zhu, Q., Chen, Q., Du, Q., Chen,
R. J., Jin, R. L., Ge, R., Zhang, R., Pan, R., Wang, R.,

9

https://www.openttd.org/
https://www.openttd.org/
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet


Factorio Learning Environment

Xu, R., Zhang, R., Chen, R., Li, S. S., Lu, S., Zhou, S.,
Chen, S., Wu, S., Ye, S., Ye, S., Ma, S., Wang, S., Zhou,
S., Yu, S., Zhou, S., Pan, S., Wang, T., Yun, T., Pei, T.,
Sun, T., Xiao, W. L., Zeng, W., Zhao, W., An, W., Liu,
W., Liang, W., Gao, W., Yu, W., Zhang, W., Li, X. Q.,
Jin, X., Wang, X., Bi, X., Liu, X., Wang, X., Shen, X.,
Chen, X., Zhang, X., Chen, X., Nie, X., Sun, X., Wang,
X., Cheng, X., Liu, X., Xie, X., Liu, X., Yu, X., Song,
X., Shan, X., Zhou, X., Yang, X., Li, X., Su, X., Lin, X.,
Li, Y. K., Wang, Y. Q., Wei, Y. X., Zhu, Y. X., Zhang,
Y., Xu, Y., Xu, Y., Huang, Y., Li, Y., Zhao, Y., Sun, Y.,
Li, Y., Wang, Y., Yu, Y., Zheng, Y., Zhang, Y., Shi, Y.,
Xiong, Y., He, Y., Tang, Y., Piao, Y., Wang, Y., Tan, Y.,
Ma, Y., Liu, Y., Guo, Y., Wu, Y., Ou, Y., Zhu, Y., Wang,
Y., Gong, Y., Zou, Y., He, Y., Zha, Y., Xiong, Y., Ma, Y.,
Yan, Y., Luo, Y., You, Y., Liu, Y., Zhou, Y., Wu, Z. F.,
Ren, Z. Z., Ren, Z., Sha, Z., Fu, Z., Xu, Z., Huang, Z.,
Zhang, Z., Xie, Z., Zhang, Z., Hao, Z., Gou, Z., Ma, Z.,
Yan, Z., Shao, Z., Xu, Z., Wu, Z., Zhang, Z., Li, Z., Gu,
Z., Zhu, Z., Liu, Z., Li, Z., Xie, Z., Song, Z., Gao, Z.,
and Pan, Z. Deepseek-v3 technical report, 2025. URL
https://arxiv.org/abs/2412.19437.

Denison, C., MacDiarmid, M., Barez, F., Duvenaud, D.,
Kravec, S., Marks, S., Schiefer, N., Soklaski, R., Tamkin,
A., Kaplan, J., et al. Sycophancy to subterfuge: Investi-
gating reward-tampering in large language models. arXiv
preprint arXiv:2406.10162, 2024.

Fan, L., Xie, A., Shi, W., Sadat, A., Tan, X., Gong, W.,
Liang, J., and Huang, D.-A. MineDojo: Building Open-
Ended Embodied Agents with Internet-Scale Knowledge.
In Advances in Neural Information Processing Systems
(NeurIPS), 2022. URL https://arxiv.org/abs/
2210.14168.

Guss, W. H., Houghton, B., Topin, N., Wang, P., Codel,
C., Veloso, M., and Salakhutdinov, R. Minerl: A large-
scale dataset of minecraft demonstrations. arXiv preprint
arXiv:1907.13440, 2019.

Hausknecht, M., Fulda, N., Tien, E., Murdock, J., Yarnell,
D., and Stone, P. Jericho: A new RL environment
for Interactive Fiction. https://github.com/
microsoft/jericho, 2019. Accessed: 2025-01-07.

Hendrycks, D., Basart, S., Kadavath, S., Mazeika, M., Arora,
A., Guo, E., Burns, C., Puranik, S., He, H., Song, D., et al.
Measuring coding challenge competence with apps. In
Thirty-fifth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track (Round 2).

Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart,
S., Tang, E., Song, D., and Steinhardt, J. Measuring math-
ematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Jimenez, C. E., Yang, J., Wettig, A., Yao, S., Pei, K., Press,
O., and Narasimhan, K. Swe-bench: Can language mod-
els resolve real-world github issues? arXiv preprint
arXiv:2310.06770, 2023.

Kambhampati, S., Valmeekam, K., Guan, L., Stechly, K.,
Verma, M., Bhambri, S., Saldyt, L., and Murthy, A. Llms
can’t plan, but can help planning in llm-modulo frame-
works. arXiv preprint arXiv:2402.01817, 2024.
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Keeling, J., Georgiev, P., Mincu, D., Wu, B., Haykal, S.,
Saputro, R., Vodrahalli, K., Qin, J., Cankara, Z., Sharma,
A., Fernando, N., Hawkins, W., Neyshabur, B., Kim, S.,
Hutter, A., Agrawal, P., Castro-Ros, A., van den Driess-
che, G., Wang, T., Yang, F., yiin Chang, S., Komarek, P.,
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A. Factorio’s Economic System
For each item i in the game, its value V (i) is computed as:

V (i) = min
r∈Ri

((∑
j∈Ir

V (j)cj,r

)
α(|Ir|) + E(r, Cr)

)
(1)

Where:

Ri is the set of recipes that can produce item i
Ir is the set of ingredients for recipe r
cj,r is the amount of ingredient j needed in recipe r
α(n) is the complexity multiplier: α(n) = βn−2 where β ≈ 1.025 is the ingredient exponent
E(r, Cr) is the energy cost function: E(r, Cr) = ln(er + 1)

√
Cr where:

er is the energy required for recipe r
Cr is the base cost of ingredients

The system is initialized with seed prices for raw resources:

• Iron ore: 3.1

• Copper ore: 3.6

• Coal: 3.0

• Stone: 2.4

• Uranium ore: 8.2

• Crude oil: 0.2

The complexity multiplier α(n) grows exponentially with the number of ingredients, incentivizing the creation of more
sophisticated items which require geometrically increasing raw resources to manufacture. The energy cost term E(r, Cr)
scales sub-linearly through the square root, preventing energy from dominating at high scales.

The final PS for a force (player or team) at time t is:

PS(t) =
∑

i∈Items

V (i)(Pi(t)− Ci(t)) (2)

Where:

Pi(t) is the total production of item i up to time t
Ci(t) is the total consumption of item i up to time t
Items is the set of all possible items and fluids

Note: While the energy cost scaling in Factorio’s economic system is designed for gameplay progression rather than physical
realism, it effectively serves our purpose of rewarding increasingly sophisticated automation.
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B. Experimental Costs

Model Input Tokens Output Tokens Total Tokens Cost (USD)
Claude-3.5-Sonnet 1,413,403,475 23,340,352 1,436,743,827 4,590.32
DeepSeek-Chat 762,901,100 10,399,299 773,300,399 927.96
Gemini-2.0-Flash 1,686,890,489 87,278,090 1,774,168,579 203.60
GPT-4o 1,061,860,012 19,739,272 1,081,599,284 2,852.04
GPT-4o-Mini 1,404,986,049 28,087,751 1,433,073,800 227.60
Llama-3.3-70B-Instruct-Turbo 447,307,196 4,945,831 452,253,027 55.16
Total 6,777,348,321 173,790,595 6,951,138,916 8,856.68

Table 3. Token Usage and Cost Comparison across Models in Open-play. The total cost was 8,856.68 USD.

Model Input Tokens Output Tokens Total Tokens Cost (USD)
Claude-3.5-Sonnet 293,433,245 5,763,345 299,196,590 966.75
DeepSeek-Chat 199,291,079 4,117,889 203,408,968 244.09
Gemini-2.0-Flash 220,466,926 7,170,513 227,637,439 24.91
GPT-4o 231,389,195 3,921,987 235,311,182 617.69
GPT-4o-Mini 145,113,122 3286602 148,399,912 23.74
Llama-3.3-70B-Instruct-Turbo 124,239,159 1,749,449 125,988,608 15.43
Total 1,213,932,726 26,009,785 1,239,942,699 1,892.61

Table 4. Token Usage and Cost Comparison across Models in Lab-play. The total cost was 1,892.61 USD.

C. Benchmark Results
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Operation Ops/Min Ops/Sec Duration

place entity next to 2,578 43 0.42
place entity 12,058 201 0.50
move to 8,650 144 0.69
harvest resource 16,599 277 0.36
craft item 16,875 281 0.36
connect entities 1,665 28 3.21
rotate entity 12,281 205 0.49
insert item 13,044 217 0.46
extract item 17,167 286 0.35
inspect inventory 17,036 284 0.35
get resource patch 7,004 117 0.86

Total 7,513 125 8.04

Figure 7. Factorio Client + Factorio Server + FLE API

Operation Ops/Min Ops/Sec Duration

place entity next to 4,857 81 0.22
place entity 22,333 372 0.27
move to 16,006 267 0.37
harvest resource 32,727 545 0.18
craft item 36,224 604 0.17
connect entities 2,926 49 1.83
rotate entity 23,467 391 0.26
insert item 25,154 419 0.24
extract item 32,997 550 0.18
inspect inventory 28,402 473 0.21
get resource patch 8,736 146 0.69

Total 13,095 218 4.61

Figure 8. Factorio Server + FLE API

Operation Ops/Min Ops/Sec Duration

place entity next to 5,070 84 1.18
place entity 5,239 87 1.15
move to 4,980 83 1.20
harvest resource 3,247 54 1.85
craft item 5,854 98 1.02
connect entities 2,150 36 2.79
rotate entity 5,370 90 1.12
insert item 5,066 84 1.18
extract item 5,449 91 1.10
inspect inventory 5,639 94 1.06
get resource patch 2,479 41 2.42

Total 4,104 68 16.08

Figure 9. Interpreter + Factorio Server + FLE API

Operation Ops/Min Ops/Sec Duration

place entity next to 4,715 79 1.27
place entity 4,774 80 1.26
move to 4,006 67 1.50
harvest resource 3,595 60 1.67
craft item 4,985 83 1.20
connect entities 1,497 25 4.01
rotate entity 4,915 82 1.22
insert item 5,047 84 1.19
extract item 4,743 79 1.26
inspect inventory 4,838 81 1.24
get resource patch 2,593 43 2.31

Total 3,639 61 18.14

Figure 10. Interpreter + Factorio Client + Factorio Server + FLE
API

Figure 11. Performance Comparison of Different FLE Configurations

D. API Design
The environment’s design prioritizes clarity and robustness over mechanical execution speed, reflecting Factorio’s emphasis
on planning and design rather than rapid action sequences. This aligns well with language models’ strengths in systematic
reasoning and program synthesis while providing rich opportunities for learning increasingly sophisticated automation
strategies.

D.1. Action and Observation

We designed the environment’s action space as a typed Python programming interface aligned with LLMs’ capabilities for
symbolic reasoning and program synthesis. Rather than requiring agents to learn low-level motor controls or pixel-level
manipulation, our environment enables them to generate, reason about, and debug code while handling the complex
requirements of factory automation. Unlike traditional reinforcement learning environments where agents must map state
observations to discrete actions, our approach allows composition of rich programs that both gather information and modify
game state, mirroring how LLMs naturally process and generate code.

From a theoretical perspective, we draw on Naur’s view of programming as a continual process of “theory building” (Naur,
1985). In this view, the generated code represents an explicit, evolving model of how the agent believes the environment
behaves. Each new function, variable, or data structure encodes the agent’s current hypotheses about causal relationships
(e.g., how ore is processed, or how machines are connected) and constraints (e.g., resource limitations or layout restrictions).
When the agent executes its code and observes the resulting changes in the game state, it obtains evidence that either affirms
or contradicts these hypotheses. Code revisions then become part of a self-correcting feedback loop in which the agent
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refines its theory to better match reality. This iterative process of writing, executing, and revising code reflects the core idea
of treating programming as theory-building in a dynamic environment.

More formally, let us define the action space as a context-sensitive program synthesis task. Let Σ be the set of all valid
Python programs, where each program p ∈ Σ is a sequence of statements ⟨s1, s2, ..., sn⟩. Each statement s is either a
method invocation or a variable declaration:

s := m | (v := m) where: (3)

• m = (f, args, ret) is a method invocation

• f ∈ F is a function identifier from our API method set F

• args = (a1, a2, ..., ak) is a sequence of typed arguments where ai ∈ Ti

• ret ∈ T ∪ {⊥} is the return type (possibly undefined)

• v is a variable identifier that enters the namespace context C

The type system T is defined by the algebraic data types:

T := Prototype | Entity | Direction | Recipe | ...
Entity := AssemblingMachine | Inserter | Chest | ...

Position := (x : R, y : R)

Method execution transforms only the game state:

exec : M ×G → (G′ × T ) (4)

While namespace context C is modified only through variable declarations:

declare : V × T × C → C ′ (5)

where M is the set of all valid method invocations, G is the set of all possible game states, V is the set of valid variable
identifiers, T is the set of possible return types, and C is the set of all possible namespace contexts.

The action space consists of 23 core API methods that form a domain-specific language for factory automation, roughly
categorised as follows:

Pure Queries (Q : G → T )

• get entities: Find entities matching a prototype
• production stats: Get factory output metrics
• nearest: Find the nearest named entity to the player
• inspect inventory: Retrieve the inventory of an entity

State Modifications (M : G → G′ × T ):

• place entity: Create buildings and machines
• rotate entity: Change entity orientation
• craft item: Manually create an item from ingredients
• set recipe: Configure production recipes
• connect entities: Connect two entities or positions with belts, pipes or power

Resource Management (R : G → G′ × T ):
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• insert item: Add items to containers
• harvest resource: Gather raw materials
• extract item: Move an item from an entity into the inventory

The namespace context C maintains references to entities, positions, and other values through variable declarations, enabling
agents to track and reuse factory components. This separation between method execution and namespace modification
supports compositional factory design while maintaining clear semantics about state changes.

1 # Pure query - affects neither G nor C
2 recipe = get_prototype_recipe(Prototype.IronGearWheel)
3 # Effects on game state G only (G -> G’ x T)
4 success = set_entity_recipe(assembler, recipe)
5 # Namespace context C is modified only through assignments
6 assembler = place_entity_next_to( # Method: G -> G’ x T_Entity
7 entity=Prototype.AssemblingMachine2, # Variable declaration: C -> C’
8 reference_position=inserter.position, # Reference from C
9 direction=Direction.RIGHT,

10 spacing=1
11 )
12 # Runtime assertions can verify both game state and namespace
13 assert isinstance(assembler, AssemblingMachine)
14 assert get_entity(
15 Prototype.AssemblingMachine2,
16 assembler.position
17 ) is not None

Figure 12. Example code showing state transitions.

A distinctive feature of our action space is the ability for agents to make runtime assertions about their beliefs regarding the
game state. These assertions provide piece-meal feedback about the game state, allowing agents to debug discrepancies
between their intended actions and actual outcomes. When assertions fail, agents can gather additional information through
observation actions to update their beliefs and modify their approach. This creates a natural debugging loop that mirrors
human programming practices.

Not all actions are available in every game state. For instance, insert item requires both a valid item prototype and a
target entity with sufficient inventory space. To help agents reason about action validity, tools like can place entity
provide explicit validation capabilities. Most tools return boolean success indicators or meaningful result values, allowing
agents to adapt their strategies based on action outcomes. Semantic errors (such as trying to insert a position into an
inventory) result in exception containing a specific failure message and stack trace being thrown.

We impose no artificial rate limiting on API calls, as the emphasis is on the logical correctness of the generated programs
rather than mechanical execution speed. This reflects the nature of Factorio as a game of planning and design. However, the
sleep method allows agents to implement deliberate timing when necessary for complex automation sequences, such as
waiting for ore to be smelted into plate for downstream steps.

An API-based action space supports natural composition of atomic actions into complex factory designs through its strongly-
typed interface. Information-gathering actions enable deliberate planning and strategic decision-making, while the action
space maps cleanly to natural language descriptions of factory building steps. The persistent namespace and type system
enable compositional reasoning about factory designs over a long horizon, with rich type information helping language
models understand entity relationships and constraints.

This cycle creates a natural debugging loop that mirrors human programming practices, allowing agents to iteratively develop
and test their automation strategies.

Partial Observability System Unlike many reinforcement learning environments that provide complete state observations,
FLE implements true partial observability through a snapshot-based system:

• State References: When an agent queries the environment (e.g., searching for nearby resources or machines), it
receives a snapshot of the current state rather than a live reference.
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Table 5. Available Basic Resource Types
Resource Category
Coal Basic Energy Resource
Iron Ore Primary Metal Resource
Copper Ore Primary Metal Resource
Stone Basic Building Resource
Water Fluid Resource
Crude Oil Advanced Fluid Resource
Uranium Ore Advanced Energy Resource
Wood Basic Building Resource

• Temporal Validity: These snapshots represent the environment at the moment of query and may become stale as the
game state evolves.

• Explicit Updates: Agents must explicitly re-query the environment to refresh their understanding of changed areas.

For example, consider this interaction:

1 # Initial query returns a snapshot
2 drill = get_entity(Prototype.BurnerMiningDrill, position=Position(x=10, y=10))
3 drill.status # Status at time of query
4
5 # After some time/actions, must re-query for current state
6 updated_drill = get_entity(Prototype.BurnerMiningDrill)

Each function operates within a rich type system that enables precise reasoning about game entities:

1 # Type hierarchy example
2 class Entity:
3 position: Position
4 direction: Direction
5 status: EntityStatus
6 # ... common properties
7
8 class AssemblingMachine(Entity):
9 recipe: Optional[Recipe]

10 input_inventory: Inventory
11 output_inventory: Inventory
12 # ... assembler-specific properties

This type system helps prevent common errors while providing clear semantics for factory construction.
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Method Input Return Description
set entity recipe Entity, Prototype Entity Sets recipe for given entity
place entity next to Prototype, Position, Direc-

tion, int
Entity Places entity adjacent to reference posi-

tion with optional spacing
pickup entity Entity/Prototype/EntityGroup,

Position?
bool Picks up entity at given position

craft item Prototype, int int Crafts items if ingredients are in inven-
tory

can place entity Prototype, Direction, Posi-
tion

bool Tests if entity can be placed at position

get entity Prototype, Position Entity Retrieves entity object at specified posi-
tion

get entities Set[Prototype], Position,
float

List[Entity] Gets entities within radius of position

set research Technology List[Ingredient] Sets current research technology
inspect inventory Entity? Inventory Returns inventory of specified entity or

player
place entity Prototype, Direction, Posi-

tion, bool
Entity Places entity at specified position if in

inventory
get research progress Technology? List[Ingredient] Gets remaining ingredients for research

completion
move to Position Position Moves to specified position
nearest buildable Prototype, BuildingBox,

Position
BoundingBox Finds nearest area where entity can be

built
connect entities Position/Entity/EntityGroup

(×2), Prototype
List[Entity] Connects two entities or positions

get resource patch Resource, Position, int ResourcePatch? Finds resource patch within radius
harvest resource Position, int, int int Harvests resource at position
sleep int bool Pauses execution for specified seconds
insert item Prototype, Entity/Entity-

Group, int
Entity Inserts items into target entity’s inventory

get connection amount Position/Entity/EntityGroup
(×2), Prototype

int Calculates number of entities needed for
connection

extract item Prototype, Position/Entity,
int

int Extracts items from entity’s inventory

get prototype recipe Prototype/str Recipe Gets recipe requirements for prototype
rotate entity Entity, Direction Entity Rotates entity to specified direction
nearest Prototype/Resource Position Finds nearest entity/resource to player

Table 6. API Methods Summary
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Technology Description
Automation Enables basic automatic assembly of items using Assembly Machine 1
Automation 2 Unlocks Assembly Machine 2 with increased crafting speed
Automation 3 Provides Assembly Machine 3 for fastest automatic crafting
Logistics Enables basic yellow belts and inserters for item transport
Logistics 2 Unlocks red transport belts and fast inserters with doubled throughput
Logistics 3 Provides blue express belts and stack inserters with maximum speed
Electronics Enables production of electronic circuits and advanced components
Electric Energy Improves power pole coverage and electricity distribution
Electric Energy 2 Enables substations for wide-area power distribution
Solar Energy Unlocks solar panels for renewable power generation
Electric Engineering Enables electric engine production for advanced machinery
Battery Technology Enables battery production for energy storage and modules
Steel Processing Allows creation of steel plates from iron
Advanced Material Processing Unlocks steel furnaces with improved smelting speed
Advanced Material Processing 2 Enables electric furnaces for automated, fuel-free smelting
Military Science Unlocks basic military research and weapon improvements
Modular Armor Provides basic modular armor with equipment grid
Power Armor Unlocks advanced armor with larger equipment grid
Power Armor 2 Provides elite armor with maximum equipment grid slots
Night Vision Enables night vision equipment for darkness operations
Energy Shield Provides basic energy shield protection modules
Energy Shield 2 Unlocks advanced shield modules with improved protection
Oil Processing Enables basic oil refining into petroleum products
Advanced Oil Processing Improves oil refining efficiency with heavy/light oil cracking
Sulfur Processing Enables sulfur production for ammunition and processing
Plastics Enables plastic production from petroleum gas
Lubricant Enables lubricant production for advanced machines and modules
Logistics Science Pack Unlocks green science pack production
Military Science Pack Enables gray military science pack production
Chemical Science Pack Unlocks blue science pack production
Production Science Pack Enables purple science pack production
Fast Inserter Unlocks faster inserters for improved item handling
Stack Inserter Enables inserters capable of moving multiple items
Stack Inserter Capacity 1 Increases stack inserter capacity by 1
Stack Inserter Capacity 2 Further increases stack inserter capacity by 2
Storage Tanks Enables fluid storage and advanced liquid handling
Barrel Filling Allows fluids to be stored and transported in barrels
Landfill Enables terrain creation over water tiles
Character Inventory Slots Increases player inventory storage capacity
Research Speed Improves laboratory research speed

Table 7. Available Technologies in FLE. Note: This is the subset of technologies that we expose to the agent, so as not to overwhelm the
context. Support for the remaining technologies can added by un-commenting them in in the code-base.
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Table 8. Entity Status States
Status Description
WORKING Entity actively performing its function
NO POWER Insufficient power supply
LOW POWER Suboptimal power supply
NO FUEL Depleted fuel supply
NO RECIPE No manufacturing recipe selected
NO INGREDIENTS Missing required input materials
FULL OUTPUT Output storage at capacity
ITEM INGREDIENT SHORTAGE Insufficient input materials
WAITING FOR SPACE Output blocked by full destination

Table 9. Position and Direction System
Component Implementation
Position 2D coordinate system with x,y floating-point values
Direction Enumerated values: NORTH (0), EAST (2), SOUTH (4), WEST (6)
BoundingBox Defines entity area with left top and right bottom positions
Dimensions Specifies width and height of entities

E. Model Access Datetimes
We last accessed the models used in this work at the following date-times:

• Claude Sonnet 3.5 - 2025-02-21 12:37:23.765905

• GPT4o - 2025-02-22 00:23:52.121478

• Llama-3.3-70B - 2025-02-21 15:48:26.132900

• GPT4o-Mini - 2025-02-20 15:20:42.093809

• Gemini-2 - 2025-02-23 03:31:31.225761

• Deepseek-v3 - 2025-02-23 03:31:07.948026
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F. Example Open-Play GPT4o-Mini Failure
On this occasion, GPT4o-Mini made unsuccessful attempts to find resources, before giving up entirely.

1 # It appears we still cannot find any coal resources, and none of my attempts have uncovered any resources
throughout the environment.

2 # Since we have been unable to locate any gatherable resources through inspections, it may be worth attempting to
validate the surrounding resources from the beginning and gauge what could be nearby.

3
4 # To proceed, it is important to start from the basics. Let’s attempt to explore the environment more

comprehensively, trying to find what other resources we have missed.
5
6 # I will attempt to inspect a much broader area by invoking a more generalized search for resources. This time,

let’s check for any resource type in a significant area without respecting the typical boundaries.
7
8 print(get_resource_patch(Resource.Stone, Position(x=100, y=100))) # Searching for stone in the further part of the

environment.
9 >>> Error: 0: (’Error occurred in the following lines: Line 8: print(get_resource_patch(Resource.Stone,

Position(x=100, y=100)))
10 Exception: "Could not get stone at x=100.0 y=100.0. No resource of type stone at the specified location."’)
11
12 # It seems that I have exhausted all attempts to locate any resources or entities with repeated efforts yielding no

results in the environment.
13 # Since all resource checks at various coordinates have returned errors suggesting that no necessary resources are

present, this hints at a fundamental issue with the resource generation or initialization.
14
15 # Without any resources, crafting items or building any infrastructure is impossible. Therefore, we should consider

taking a step back and looking at restarting the environment or regaining access to a scenario where resource
generation is possible.

16
17 # As all methods seem to lead to no resources, let’s output a final message summarizing the current state and

proposing to reset or adjust the environment scenario for more fruitful exploration.
18
19 print("No resources or entities found in the environment. Consider resetting the environment or starting a new

scenario to enable resource generation.")
20 >>> 0: (’No resources or entities found in the environment. Consider resetting the environment or starting a new

scenario to enable resource generation.’,)
21
22 # The ongoing lack of updates or results indicates that we remain in an unresponsive state within the environment.
23 # Given the absence of resources and entities, our options for progressing in FactoryEnv remain severely limited.
24
25 # The optimal step forward would be to reset the environment to allow resource generation and subsequently enable

crafting and automation processes.
26
27 # I am here and ready to undertake any new operations, adjustments, or tasks once further instructions are given.

Please let me know how you’d like to proceed!

This was followed by 234 more appeals to reset before the run terminated.

G. Lab Play Detailed Description
G.1. Task quotas

The list of tasks and their target entities with their quotas are shown in table 10. To get the equivalent quota for fluids and
solids, we used the price comparison of oil and iron ore. The value of crude-oil is 0.2 and for iron ore is 3.1. Using the
default quota of 16 for solids, the equivalent quota for crude-oil is 16 ∗ 3.1/0.2 = 248, which we have rounded up to 250.

G.2. Laboratory map

Figure 13 shows the laboratory map designed for constrained evaluation of agents

G.3. inventory

All start with an inventory as follows:

coal: 500, burner-mining-drill: 50, wooden-chest: 10, burner-inserter: 50,inserter: 50, transport-belt: 500, stone-furnace: 10,
boiler: 2, offshore-pump: 2, steam-engine: 2, electric-mining-drill: 50, small-electric-pole: 500, pipe: 500, assembling-
machine-2: 10, electric-furnace: 10, pipe-to-ground: 100, underground-belt: 100, pumpjack: 10, oil-refinery: 5, chemical-
plant: 5, storage-tank: 10,
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Target entity Quota
Iron ore 16
Iron plate 16
Iron gear wheel 16
Wall 16
Steel plate 16
Electronic circuit 16
Automation science pack 16
Inserter 16
Logistic science pack 16
Military science pack 16
Plastic Bar 16
Sulfur 16
Battery 16
Piercing rounds magazine 16
Engine unit 16
Advanced circuit 16
Processing unit 16
Low density structure 16
Chemical science pack 16
Production science pack 16
Utility science pack 16
Crude oil 250
Petroleum Gas 250
Sulfuric Acid 250

Table 10. lab-play target entities

G.4. Prompt

Below is the core system prompt used for the lab play tasks. This is without the guide and API schema which are brought
out and described in Appendix I

1 # Factorio LLM Agent Instructions
2
3 ## Overview
4 You are an AI agent designed to play Factorio, specializing in:
5 - Long-horizon planning
6 - Spatial reasoning
7 - Systematic automation
8
9 ## Environment Structure

10 - Operates like an interactive Python shell
11 - Agent messages = Python programs to execute
12 - User responses = STDOUT/STDERR from REPL
13 - Interacts through 27 core API methods (to be specified)
14
15 ## Response Format
16
17 ### 1. PLANNING Stage
18 Think through each step extensively in natural language, addressing:
19 1. Error Analysis
20 - Was there an error in the previous execution?
21 - If yes, what was the problem?
22 2. Next Step Planning
23 - What is the most useful next step of reasonable size?
24 - Why is this step valuable?
25 3. Action Planning
26 - What specific actions are needed?
27 - What resources are required?
28
29 ### 2. POLICY Stage
30 Write Python code to execute the planned actions:
31 ‘‘‘python
32 # Code must be enclosed in Python tags
33 your_code_here
34 ‘‘‘
35
36 ## Best Practices
37
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Figure 13. Overview of the laboratory map, where agents are tasked to carry out lab-play tasks

38 ### Modularity
39 - Create small, modular policies
40 - Each policy should have a single clear purpose
41 - Keep policies easy to debug and modify
42 - Avoid breaking existing automated structures
43 - Encapsulate working logic into functions if needed
44
45 ### Debugging & Verification
46 - Use print statements to monitor important state
47 - Implement assert statements for self-verification
48 - Use specific, parameterized assertion messages
49 - Example: ‘assert condition, f"Expected {expected}, got {actual}"‘
50
51 ### State Management
52 - Consider entities needed for each step
53 - Track entities across different inventories
54 - Monitor missing requirements
55 - Preserve working automated structures
56
57 ### Error Handling
58 - Fix errors as they occur
59 - Don’t repeat previous steps
60 - Continue from last successful execution
61 - Avoid unnecessary state changes
62
63 ### Code Structure
64 - Write code as direct Python interpreter commands
65 - Only encapsulate reusable utility code into functions
66 - Use appropriate spacing and formatting
67
68 ## Understanding Output
69
70 ### Error Messages
71 ‘‘‘stderr
72 Error: 1: ("Initial Inventory: {...}")
73 10: ("Error occurred in following lines...")
74 ‘‘‘
75 - Numbers indicate line of execution
76 - Previous lines executed successfully
77 - Fix errors at indicated line
78
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79 ### Status Updates
80 ‘‘‘stdout
81 23: (’Resource collection completed...’)
82 78: (’Entities on map: [...]’)
83 ‘‘‘
84 - Shows execution progress
85 - Provides entity status
86 - Lists warnings and conditions
87
88 ### Entity Status Checking
89 - Monitor entity ‘warnings‘ field
90 - Check entity ‘status‘ field
91 - Verify resource levels
92 - Track production states
93
94 ## Game Progression
95 - Think about long term objectives, and break them down into smaller, manageable steps.
96 - Advance toward more complex automation
97 - Build on previous successes
98 - Maintain efficient resource usage
99

100 ## Utility Functions
101 - Create functions to encapsulate proven, reusable logic
102 - Place function definitions before their first use
103 - Document function purpose, parameters, and return values
104 - Test functions thoroughly before relying on them
105 - Example:
106 ‘‘‘python
107 def find_idle_furnaces(entities):
108 \"\"\"Find all furnaces that are not currently working.
109
110 Args:
111 entities (list): List of entities from get_entities()
112
113 Returns:
114 list: Furnaces with ’no_ingredients’ status
115 \"\"\"
116 return [e for e in entities if (
117 e.name == ’stone-furnace’ and
118 e.status == EntityStatus.NO_INGREDIENTS
119 )]
120 ‘‘‘
121
122 ## Data Structures
123 - Use Python’s built-in data structures to organize entities
124 - Sets for unique entity collections:
125 ‘‘‘python
126 working_furnaces = {e for e in get_entities()
127 if e.status == EntityStatus.WORKING}
128 ‘‘‘
129 - Dictionaries for entity mapping:
130 ‘‘‘python
131 furnace_by_position = {
132 (e.position.x, e.position.y): e
133 for e in get_entities()
134 if isinstance(e, Furnace)
135 }
136 ‘‘‘
137 - Lists for ordered operations:
138 ‘‘‘python
139 sorted_furnaces = sorted(
140 get_entities(),
141 key=lambda e: (e.position.x, e.position.y)
142 )
143 ‘‘‘
144
145 ## Important Notes
146 - Always inspect game state before making changes
147 - Consider long-term implications of actions
148 - Maintain working systems
149 - Build incrementally and verify each step
150 - DON’T REPEAT YOUR PREVIOUS STEPS - just continue from where you left off. Take into account what was the last

action that was executed and continue from there. If there was a error previously, do not repeat your last
lines - as this will alter the game state unnecessarily.

151 Do not encapsulate your code in a function - just write it as if you were typing directly into the Python
interpreter.
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Figure 14.

H. Rocket Silo Resource Requirements
Figure 14 shows the complexity and dependencies requires to achieve one of the end-game items, a Rocket Silo

I. Agent scaffolding details
I.1. Guide

The guide is organized as separate markdown files, each explaining how to use a specific tool. Each file contains a detailed
description of the tool and its use cases, along with essential Factorio knowledge needed to successfully use the API. You
can find these files in the open-source repository within their respective tool folders. For example, the guide for connecting
entities is located at env/src/tools/agent/connect entities/agent.md.

I.2. API Schema prompt

Below is the API schema given to the agent

1 ’‘‘‘types
2 class RecipeName(enum.Enum):
3 """
4 Recipe names that can be used in the game for fluids
5 """
6 NuclearFuelReprocessing = "nuclear-fuel-reprocessing"
7 UraniumProcessing = "uranium-processing"
8 SulfuricAcid = "sulfuric-acid" # Recipe for producing sulfuric acid with a chemical plant
9 BasicOilProcessing = "basic-oil-processing" # Recipe for producing petroleum gas with a oil refinery

10 AdvancedOilProcessing = "advanced-oil-processing" # Recipe for producing petroleum gas, heavy oil and light oil
with a oil refinery

11 CoalLiquefaction = "coal-liquefaction" # Recipe for producing petroleum gas in a oil refinery
12 HeavyOilCracking = "heavy-oil-cracking" # Recipe for producing light oil in a chemical plant
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13 LightOilCracking = "light-oil-cracking" # Recipe for producing petroleum gas in a chemical plant
14 SolidFuelFromHeavyOil = "solid-fuel-from-heavy-oil" # Recipe for producing solid fuel in a chemical plant
15 SolidFuelFromLightOil = "solid-fuel-from-light-oil" # Recipe for producing solid fuel in a chemical plant
16 SolidFuelFromPetroleumGas = "solid-fuel-from-petroleum-gas" # Recipe for producing solid fuel in a chemical

plant
17 FillCrudeOilBarrel = "fill-crude-oil-barrel"
18 FillHeavyOilBarrel = "fill-heavy-oil-barrel"
19 FillLightOilBarrel = "fill-light-oil-barrel"
20 FillLubricantBarrel = "fill-lubricant-barrel"
21 FillPetroleumGasBarrel = "fill-petroleum-gas-barrel"
22 FillSulfuricAcidBarrel = "fill-sulfuric-acid-barrel"
23 FillWaterBarrel = "fill-water-barrel"
24 EmptyCrudeOilBarrel = "empty-crude-oil-barrel"
25 EmptyHeavyOilBarrel = "empty-heavy-oil-barrel"
26 EmptyLightOilBarrel = "empty-light-oil-barrel"
27 EmptyLubricantBarrel = "empty-lubricant-barrel"
28 EmptyPetroleumGasBarrel = "empty-petroleum-gas-barrel"
29 EmptySulfuricAcidBarrel = "empty-sulfuric-acid-barrel"
30 EmptyWaterBarrel = "empty-water-barrel"
31 class Prototype(enum.Enum, metaclass=PrototypeMetaclass):
32 AssemblingMachine1 = "assembling-machine-1", AssemblingMachine
33 AssemblingMachine2 = "assembling-machine-2", AdvancedAssemblingMachine
34 AssemblingMachine3 = "assembling-machine-3", AdvancedAssemblingMachine
35 Centrifuge = "centrifuge", AssemblingMachine
36 BurnerInserter = "burner-inserter", BurnerInserter
37 FastInserter = "fast-inserter", Inserter
38 ExpressInserter = "express-inserter", Inserter
39 LongHandedInserter = "long-handed-inserter", Inserter
40 StackInserter = "stack-inserter", Inserter
41 StackFilterInserter = "stack-filter-inserter", FilterInserter
42 FilterInserter = "filter-inserter", FilterInserter
43 Inserter = "inserter", Inserter
44 BurnerMiningDrill = "burner-mining-drill", BurnerMiningDrill
45 ElectricMiningDrill = "electric-mining-drill", ElectricMiningDrill
46 StoneFurnace = "stone-furnace", Furnace
47 SteelFurnace = "steel-furnace", Furnace
48 ElectricFurnace = "electric-furnace", ElectricFurnace
49 Splitter = "splitter", Splitter
50 FastSplitter = "fast-splitter", Splitter
51 ExpressSplitter = "express-splitter", Splitter
52 Rail = "rail", Rail
53 TransportBelt = "transport-belt", TransportBelt
54 FastTransportBelt = "fast-transport-belt", TransportBelt
55 ExpressTransportBelt = "express-transport-belt", TransportBelt
56 ExpressUndergroundBelt = "express-underground-belt", UndergroundBelt
57 FastUndergroundBelt = "fast-underground-belt", UndergroundBelt
58 UndergroundBelt = "underground-belt", UndergroundBelt
59 OffshorePump = "offshore-pump", OffshorePump
60 PumpJack = "pumpjack", PumpJack
61 Pump = "pump", Pump
62 Boiler = "boiler", Boiler
63 OilRefinery = "oil-refinery", OilRefinery
64 ChemicalPlant = "chemical-plant", ChemicalPlant
65 SteamEngine = "steam-engine", Generator
66 SolarPanel = "solar-panel", SolarPanel
67 UndergroundPipe = "pipe-to-ground", Pipe
68 HeatPipe = \’heat-pipe\’, Pipe
69 Pipe = "pipe", Pipe
70 SteelChest = "steel-chest", Chest
71 IronChest = "iron-chest", Chest
72 WoodenChest = "wooden-chest", Chest
73 IronGearWheel = "iron-gear-wheel", Entity
74 StorageTank = "storage-tank", StorageTank
75 SmallElectricPole = "small-electric-pole", ElectricityPole
76 MediumElectricPole = "medium-electric-pole", ElectricityPole
77 BigElectricPole = "big-electric-pole", ElectricityPole
78 Coal = "coal", None
79 Wood = "wood", None
80 Sulfur = "sulfur", None
81 IronOre = "iron-ore", None
82 CopperOre = "copper-ore", None
83 Stone = "stone", None
84 Concrete = "concrete", None
85 UraniumOre = "uranium-ore", None
86 IronPlate = "iron-plate", None # Crafting requires smelting 1 iron ore
87 IronStick = "iron-stick", None
88 SteelPlate = "steel-plate", None # Crafting requires smelting 5 iron plates
89 CopperPlate = "copper-plate", None # Crafting requires smelting 1 copper ore
90 StoneBrick = "stone-brick", None # Crafting requires smelting 2 stone
91 CopperCable = "copper-cable", None
92 PlasticBar = "plastic-bar", None
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93 EmptyBarrel = "empty-barrel", None
94 Battery = "battery", None
95 SulfuricAcid = "sulfuric-acid", None
96 Uranium235 = "uranium-235", None
97 Uranium238 = "uranium-238", None
98 Lubricant = "lubricant", None
99 PetroleumGas = "petroleum-gas", None

100 AdvancedOilProcessing = "advanced-oil-processing", None # These are recipes, not prototypes.
101 CoalLiquifaction = "coal-liquifaction", None # These are recipes, not prototypes.
102 SolidFuel = "solid-fuel", None # These are recipes, not prototypes.
103 LightOil = "light-oil", None
104 HeavyOil = "heavy-oil", None
105 ElectronicCircuit = "electronic-circuit", None
106 AdvancedCircuit = "advanced-circuit", None
107 ProcessingUnit = "processing-unit", None
108 EngineUnit = "engine-unit", None
109 ElectricEngineUnit = "electric-engine-unit", None
110 Lab = "lab", Lab
111 Accumulator = "accumulator", Accumulator
112 GunTurret = "gun-turret", GunTurret
113 PiercingRoundsMagazine = "piercing-rounds-magazine", Ammo
114 FirearmMagazine = "firearm-magazine", Ammo
115 Grenade = "grenade", None
116 Radar = "radar", Entity
117 StoneWall = "stone-wall", Entity
118 Gate = "gate", Entity
119 SmallLamp = "small-lamp", Entity
120 NuclearReactor = "nuclear-reactor", Reactor
121 UraniumFuelCell = "uranium-fuel-cell", None
122 HeatExchanger = \’heat-exchanger\’, HeatExchanger
123 AutomationSciencePack = "automation-science-pack", None
124 MilitarySciencePack = "military-science-pack", None
125 LogisticsSciencePack = "logistic-science-pack", None
126 ProductionSciencePack = "production-science-pack", None
127 UtilitySciencePack = "utility-science-pack", None
128 ChemicalSciencePack = "chemical-science-pack", None
129
130 ProductivityModule = "productivity-module", None
131 ProductivityModule2 = "productivity-module-2", None
132 ProductivityModule3 = "productivity-module-3", None
133 FlyingRobotFrame = "flying-robot-frame", None
134 RocketSilo = "rocket-silo", RocketSilo
135 Rocket = "rocket", Rocket
136 Satellite = "satellite", None
137 RocketPart = "rocket-part", None
138 RocketControlUnit = "rocket-control-unit", None
139 LowDensityStructure = "low-density-structure", None
140 RocketFuel = "rocket-fuel", None
141 SpaceSciencePack = "space-science-pack", None
142 BeltGroup = "belt-group", BeltGroup
143 PipeGroup = "pipe-group", PipeGroup
144 ElectricityGroup = "electricity-group", ElectricityGroup
145 def __init__(self, prototype_name, entity_class_name):
146 self.prototype_name = prototype_name
147 self.entity_class = entity_class_name
148 @property
149 def WIDTH(self):
150 return self.entity_class._width # Access the class attribute directly
151
152 @property
153 def HEIGHT(self):
154 return self.entity_class._height
155 prototype_by_name = {prototype.value[0]: prototype for prototype in Prototype}
156 prototype_by_title = {str(prototype): prototype for prototype in Prototype}
157 class Technology(enum.Enum):
158 Automation = "automation" # Unlocks assembling machine 1
159 Automation2 = "automation-2" # Unlocks assembling machine 2
160 Automation3 = "automation-3" # Unlocks assembling machine 3
161 Logistics = "logistics" # Unlocks basic belts and inserters
162 Logistics2 = "logistics-2" # Unlocks fast belts and inserters
163 Logistics3 = "logistics-3" # Unlocks express belts and inserters
164 AdvancedElectronics = "advanced-electronics"
165 AdvancedElectronics2 = "advanced-electronics-2"
166 Electronics = "electronics"
167 ElectricEnergy = "electric-energy-distribution-1"
168 ElectricEnergy2 = "electric-energy-distribution-2"
169 SolarEnergy = "solar-energy"
170 ElectricEngineering = "electric-engine"
171 BatteryTechnology = "battery"
172 NuclearPower = "nuclear-power"
173 SteelProcessing = "steel-processing"
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174 AdvancedMaterialProcessing = "advanced-material-processing"
175 AdvancedMaterialProcessing2 = "advanced-material-processing-2"
176 MilitaryScience = "military"
177 ModularArmor = "modular-armor"
178 PowerArmor = "power-armor"
179 PowerArmor2 = "power-armor-mk2"
180 NightVision = "night-vision-equipment"
181 EnergyShield = "energy-shields"
182 EnergyShield2 = "energy-shields-mk2-equipment"
183 RailwayTransportation = "railway"
184 OilProcessing = "oil-processing"
185 AdvancedOilProcessing = "advanced-oil-processing"
186 SulfurProcessing = "sulfur-processing"
187 Plastics = "plastics"
188 Lubricant = "lubricant"
189 ProductivityModule = "productivity-module"
190 ProductivityModule2 = "productivity-module-2"
191 ProductivityModule3 = "productivity-module-3"
192 Robotics = "robotics"
193 LogisticsSciencePack = "logistic-science-pack"
194 MilitarySciencePack = "military-science-pack"
195 ChemicalSciencePack = "chemical-science-pack"
196 ProductionSciencePack = "production-science-pack"
197 FastInserter = "fast-inserter"
198 StackInserter = "stack-inserter"
199 StackInserterCapacity1 = "stack-inserter-capacity-bonus-1"
200 StackInserterCapacity2 = "stack-inserter-capacity-bonus-2"
201 StorageTanks = "fluid-handling"
202 BarrelFilling = "barrel-filling"
203 Grenades = "grenades"
204 Landfill = "landfill"
205 CharacterInventorySlots = "character-inventory-slots"
206 ResearchSpeed = "research-speed"
207 SpaceScience = "space-science-pack"
208 RocketFuel = "rocket-fuel"
209 RocketControl = "rocket-control-unit"
210 LowDensityStructure = "low-density-structure"
211 RocketSiloTechnology = "rocket-silo"
212 technology_by_name = {tech.value: tech for tech in Technology}
213 class Resource:
214 Coal = "coal", ResourcePatch
215 IronOre = "iron-ore", ResourcePatch
216 CopperOre = "copper-ore", ResourcePatch
217 Stone = "stone", ResourcePatch
218 Water = "water", ResourcePatch
219 CrudeOil = "crude-oil", ResourcePatch
220 UraniumOre = "uranium-ore", ResourcePatch
221 Wood = "wood", ResourcePatch
222 class EntityStatus(Enum):
223 WORKING = \’working\’
224 NORMAL = \’normal\’
225 NO_POWER = \’no_power\’
226 LOW_POWER = \’low_power\’
227 NO_FUEL = \’no_fuel\’
228 EMPTY = \’empty\’
229 NOT_PLUGGED_IN_ELECTRIC_NETWORK = \’not_plugged_in_electric_network\’
230 CHARGING = \’charging\’
231 DISCHARGING = \’discharging\’
232 FULLY_CHARGED = \’fully_charged\’
233 NO_RECIPE = \’no_recipe\’
234 NO_INGREDIENTS = \’no_ingredients\’
235 NOT_CONNECTED = \’not_connected\’
236 NO_INPUT_FLUID = \’no_input_fluid\’
237 NO_RESEARCH_IN_PROGRESS = \’no_research_in_progress\’
238 NO_MINABLE_RESOURCES = \’no_minable_resources\’
239 LOW_INPUT_FLUID = \’low_input_fluid\’
240 FLUID_INGREDIENT_SHORTAGE = \’fluid_ingredient_shortage\’
241 FULL_OUTPUT = \’full_output\’
242 FULL_BURNT_RESULT_OUTPUT = \’full_burnt_result_output\’
243 ITEM_INGREDIENT_SHORTAGE = \’item_ingredient_shortage\’
244 MISSING_REQUIRED_FLUID = \’missing_required_fluid\’
245 MISSING_SCIENCE_PACKS = \’missing_science_packs\’
246 WAITING_FOR_SOURCE_ITEMS = \’waiting_for_source_items\’
247 WAITING_FOR_SPACE_IN_DESTINATION = \’waiting_for_space_in_destination\’
248 PREPARING_ROCKET_FOR_LAUNCH = \’preparing_rocket_for_launch\’
249 WAITING_TO_LAUNCH_ROCKET = \’waiting_to_launch_rocket\’
250 LAUNCHING_ROCKET = \’launching_rocket\’
251 NO_AMMO = \’no_ammo\’
252 LOW_TEMPERATURE = \’low_temperature\’
253 NOT_CONNECTED_TO_RAIL = \’not_connected_to_rail\’
254 def __repr__(self):
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255 def from_string(cls, status_string):
256 def from_int(cls, status_int):
257 class Inventory(BaseModel):
258 class Config:
259 populate_by_name = True
260 arbitrary_types_allowed = True
261 def __init__(self):
262 def __getitem__(self, key: \’Prototype\’, default) -> int:
263 def get(self, key: \’Prototype\’, default) -> int:
264 def __setitem__(self, key: \’Prototype\’, value: int) -> None:
265 def items(self):
266 def __repr__(self) -> str:
267 def __str__(self) -> str:
268 def __len__(self) -> int:
269 def keys(self):
270 def values(self):
271 class Direction(Enum):
272 UP = 0
273 NORTH = 0
274 RIGHT = 2
275 EAST = 2
276 DOWN = 4
277 SOUTH = 4
278 LEFT = 6
279 WEST = 6
280 def __repr__(self):
281 def from_string(cls, direction_string):
282 class Position(BaseModel):
283 x: float
284 y: float
285 def _parse_positional_args(cls, v):
286 def __init__(self):
287 def parse_args(cls, values):
288 def __hash__(self):
289 def __add__(self, other) -> \’Position\’:
290 def __sub__(self, other) -> \’Position\’:
291 def is_close(self, a: \’Position\’, tolerance: float) -> bool:
292 def distance(self, a: \’Position\’) -> float:
293 def _modifier(self, args):
294 def above(self) -> \’Position\’:
295 def up(self) -> \’Position\’:
296 def below(self) -> \’Position\’:
297 def down(self) -> \’Position\’:
298 def left(self) -> \’Position\’:
299 def right(self) -> \’Position\’:
300 def to_bounding_box(self, other: \’Position\’) -> \’BoundingBox\’:
301 def __eq__(self, other) -> bool:
302 class IndexedPosition(Position):
303 type: str
304 def __new__(cls):
305 def __init__(self):
306 def __hash__(self):
307 class EntityInfo(BaseModel):
308 name: str
309 direction: int
310 position: Position
311 start_position: Optional[Position]
312 end_position: Optional[Position]
313 quantity: Optional[int]
314 warning: Optional[str]
315 contents: Dict[str, int]
316 status: EntityStatus
317 class InspectionResults(BaseModel):
318 entities: List[EntityInfo]
319 player_position: Tuple[float, float]
320 radius: float
321 time_elapsed: float
322 def get_entity(self, prototype: \’Prototype\’) -> Optional[EntityInfo]:
323 def get_entities(self, prototype: \’Prototype\’) -> List[EntityInfo]:
324 class BoundingBox(BaseModel):
325 left_top: Position
326 right_bottom: Position
327 left_bottom: Position
328 right_top: Position
329 def center(self) -> Position:
330 def width(self) -> float:
331 def height(self) -> float:
332 class BuildingBox(BaseModel):
333 height: int
334 width: int
335 class ResourcePatch(BaseModel):
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336 name: str
337 size: int
338 bounding_box: BoundingBox
339 class Dimensions(BaseModel):
340 width: float
341 height: float
342 class TileDimensions(BaseModel):
343 tile_width: float
344 tile_height: float
345 class Ingredient(BaseModel):
346 name: str
347 count: Optional[int]
348 type: Optional[Literal[\’fluid\’, \’item\’]]
349 class Product(Ingredient):
350 probability: Optional[float]
351 class Recipe(BaseModel):
352 name: Optional[str]
353 ingredients: Optional[List[Ingredient]]
354 products: Optional[List[Product]]
355 energy: Optional[float]
356 category: Optional[str]
357 enabled: bool
358 class BurnerType(BaseModel):
359 """
360 Type of entity that burns fuel
361 """
362 class Config:
363 arbitrary_types_allowed = True
364 fuel: Inventory
365 class EntityCore(BaseModel):
366 name: str
367 direction: Direction
368 position: Position
369 def __repr__(self):
370 class Entity(EntityCore):
371 """
372 Base class for all entities in the game.
373 """
374 id: Optional[int]
375 energy: float
376 type: Optional[str]
377 dimensions: Dimensions
378 tile_dimensions: TileDimensions
379 prototype: Any
380 health: float
381 warnings: List[str]
382 status: EntityStatus
383 def __repr__(self) -> str:
384 def _get_prototype(self):
385 def width(cls):
386 def height(cls):
387 class StaticEntity(Entity):
388 """
389 A static (non-moving) entity in the game.
390 """
391 neighbours: Optional[Union[Dict, List[EntityCore]]]
392 class Rail(Entity):
393 """
394 Railway track for trains.
395 """
396 _height: float
397 _width: float
398 class Splitter(Entity):
399 """
400 A belt splitter that divides item flow between outputs.
401 """
402 input_positions: List[Position]
403 output_positions: List[Position]
404 inventory: List[Inventory]
405 _height: float
406 _width: float
407 class TransportBelt(Entity):
408 """
409 A conveyor belt for moving items.
410 """
411 input_position: Position
412 output_position: Position
413 inventory: Inventory
414 is_terminus: bool
415 is_source: bool
416 _height: float
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417 _width: float
418 def __repr__(self):
419 def __hash__(self):
420 def __eq__(self, other):
421 class Electric(BaseModel):
422 """
423 Base class for entities that interact with the power grid.
424 """
425 electrical_id: Optional[int]
426 class ElectricalProducer(Electric, Entity):
427 """
428 An entity that generates electrical power.
429 """
430 production: Optional[Any]
431 energy_source: Optional[Any]
432 electric_output_flow_limit: Optional[float]
433 class EnergySource(BaseModel):
434 buffer_capacity: str
435 input_flow_limit: str
436 output_flow_limit: str
437 drain: str
438 class Accumulator(StaticEntity, Electric):
439 """
440 Represents an energy storage device
441 """
442 energy_source: Optional[EnergySource]
443 _height: float
444 _width: float
445 class Inserter(StaticEntity, Electric):
446 """
447 Represents an inserter that moves items between entities.
448 Requires electricity to power
449 """
450 pickup_position: Optional[Position]
451 drop_position: Position
452 _width: float
453 _height: float
454 class Filtered(BaseModel):
455 filter: Optional[Any]
456 class UndergroundBelt(TransportBelt):
457 """
458 An underground section of transport belt.
459 """
460 is_input: bool
461 connected_to: Optional[int]
462 _height: float
463 _width: float
464 class MiningDrill(StaticEntity):
465 """
466 Base class for mining drills that extract resources.
467 The direction of the drill is where the drop_position is oriented towards
468 """
469 drop_position: Position
470 resources: List[Ingredient]
471 class ElectricMiningDrill(MiningDrill, Electric):
472 """
473 An electrically-powered mining drill.
474 """
475 _height: float
476 _width: float
477 class BurnerInserter(Inserter, BurnerType):
478 """
479 An inserter powered by burnable fuel.
480 """
481 _height: float
482 _width: float
483 class BurnerMiningDrill(MiningDrill, BurnerType):
484 """
485 A mining drill powered by burnable fuel.
486 """
487 _width = 2
488 _height = 2
489 class Ammo(BaseModel):
490 name: str
491 magazine_size: Optional[int]
492 reload_time: Optional[float]
493 class GunTurret(StaticEntity):
494 turret_ammo: Inventory
495 _height: float
496 _width: float
497 kills: Optional[int]
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498 class AssemblingMachine(StaticEntity, Electric):
499 """
500 A machine that crafts items from ingredients.
501 Requires power to operate
502 """
503 recipe: Optional[Recipe]
504 assembling_machine_input: Inventory
505 assembling_machine_output: Inventory
506 assembling_machine_modules: Inventory
507 _height: float
508 _width: float
509 class FluidHandler(StaticEntity):
510 """
511 Base class for entities that handle fluids
512 """
513 connection_points: List[Position]
514 fluid_box: Optional[Union[dict, list]]
515 fluid_systems: Optional[Union[dict, list]]
516 class AdvancedAssemblingMachine(FluidHandler, AssemblingMachine):
517 """
518 A second and third tier assembling machine that can handle fluids.
519 Requires power to operate
520 A recipe first needs to be set and then the input fluid source can be connected with pipes
521 """
522 _height: float
523 _width: float
524 class MultiFluidHandler(StaticEntity):
525 """
526 Base class for entities that handle multiple fluid types.
527 """
528 input_fluids: List[str]
529 output_fluids: List[str]
530 input_connection_points: List[IndexedPosition]
531 output_connection_points: List[IndexedPosition]
532 fluid_box: Optional[Union[dict, list]]
533 fluid_systems: Optional[Union[dict, list]]
534 class FilterInserter(Inserter, Filtered):
535 """
536 A inserter that only moves specific items
537 """
538 _height: float
539 _width: float
540 class ChemicalPlant(MultiFluidHandler, AssemblingMachine):
541 """
542 Represents a chemical plant that processes fluid recipes.
543 Requires powering and accepts input fluids (from storage tanks etc) and solids (with inserters)
544 Outputs either:
545 solids (battery, plastic) that need to be extracted with inserters
546 fluids (sulfuric acid, oil) that need to be extracted with pipes
547 IMPORTANT: First a recipe needs to be set and then the fluid sources can be connected to the plant
548 """
549 _height: float
550 _width: float
551 class OilRefinery(MultiFluidHandler, AssemblingMachine):
552 """
553 An oil refinery for processing crude oil into products.
554 Requires powering and accepts input fluids (from pumpjacks, storage tanks etc) and solids
555 First a recipe needs to be set and then the fluid sources can be connected to the refinery
556 """
557 _height: float
558 _width: float
559 class PumpJack(MiningDrill, FluidHandler, Electric):
560 """
561 A pump jack for extracting crude oil. Requires electricity
562 This needs to be placed on crude oil and oil needs to be extracted with pipes
563 Oil can be sent to a storage tank, oil refinery or a chemical plant
564 Oil can also be sent to assmbling machine to be made into oil barrels
565 Important: The PumpJack needs to be placed on exact crude oil tiles
566
567 """
568 _height: float
569 _width: float
570 class SolarPanel(ElectricalProducer):
571 """
572 A solar panel for generating power from sunlight.
573 This entity generated power during the day
574 Thus it can be directly connected to a entity to power it
575 """
576 _height: float
577 _width: float
578 class Boiler(FluidHandler, BurnerType):
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579 """
580 A boiler that heats water into steam.
581 """
582 steam_output_point: Optional[Position]
583 _height: float
584 _width: float
585 class HeatExchanger(Boiler):
586 """
587 A nuclear heat exchanger that converts water to steam.
588 """
589 class Generator(FluidHandler, StaticEntity):
590 """
591 A steam generator that produces electricity.
592 """
593 _height: float
594 _width: float
595 class Pump(FluidHandler, Electric):
596 """
597 An electrically-powered fluid pump.
598 """
599 _height: float
600 _width: float
601 class OffshorePump(FluidHandler):
602 """
603 A pump that extracts water from water tiles.
604 Can be used in power generation setups and to supply water to chemical plants and oil refineries.
605 """
606 _height: float
607 _width: float
608 class ElectricityPole(Entity, Electric):
609 """
610 A power pole for electricity distribution.
611 """
612 flow_rate: float
613 _height: float
614 _width: float
615 def __hash__(self):
616 class Furnace(Entity, BurnerType):
617 """
618 A furnace for smelting items
619 """
620 furnace_source: Inventory
621 furnace_result: Inventory
622 _height: float
623 _width: float
624 class ElectricFurnace(Entity, Electric):
625 """
626 An electrically-powered furnace.
627 """
628 furnace_source: Inventory
629 furnace_result: Inventory
630 _height: float
631 _width: float
632 class Chest(Entity):
633 """
634 A storage chest.
635 """
636 inventory: Inventory
637 _height: float
638 _width: float
639 class StorageTank(FluidHandler):
640 """
641 A tank for storing fluids.
642 Can be used for inputs and outputs of chemical plants and refineries.
643 Also can store water from offshore pumps.
644 """
645 _height: float
646 _width: float
647 class RocketSilo(StaticEntity, Electric):
648 """
649 A rocket silo that can build and launch rockets.
650 """
651 rocket_parts: int
652 rocket_inventory: Inventory
653 rocket_progress: float
654 launch_count: int
655 _width: float
656 _height: float
657 def __repr__(self) -> str:
658 class Rocket(Entity):
659 """
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660 A rocket that can be launched from a silo.
661 """
662 payload: Optional[Inventory]
663 launch_progress: float
664 def __repr__(self) -> str:
665 class Lab(Entity, Electric):
666 """
667 A research laboratory.
668 """
669 lab_input: Inventory
670 lab_modules: Inventory
671 research: Optional[Any]
672 _height: float
673 _width: float
674 def __repr__(self) -> str:
675 class Pipe(Entity):
676 """
677 A pipe for fluid transport
678 """
679 fluidbox_id: int
680 flow_rate: float
681 contents: float
682 fluid: Optional[str]
683 _height: float
684 _width: float
685 class Reactor(StaticEntity):
686 """
687 A nuclear reactor
688 """
689 _height: float
690 _width: float
691 class EntityGroup(BaseModel):
692 id: int
693 status: EntityStatus
694 position: Position
695 name: str
696 class WallGroup(EntityGroup):
697 """
698 A wall
699 """
700 name: str
701 entities: List[Entity]
702 class BeltGroup(EntityGroup):
703 """
704 A connected group of transport belts.
705 """
706 belts: List[TransportBelt]
707 inputs: List[Entity]
708 outputs: List[Entity]
709 inventory: Inventory
710 name: str
711 def __repr__(self) -> str:
712 def __str__(self):
713 class PipeGroup(EntityGroup):
714 """
715 A connected group of pipes.
716 """
717 pipes: List[Pipe]
718 name: str
719 def __repr__(self) -> str:
720 def __str__(self):
721 class ElectricityGroup(EntityGroup):
722 """
723 Represents a connected power network.
724 """
725 name: str
726 poles: List[ElectricityPole]
727 def __repr__(self) -> str:
728 def __hash__(self):
729 def __str__(self):
730 ‘‘‘
731 ‘‘‘methods
732 can_place_entity(entity: Prototype, direction: Direction = <Direction.UP: 0>, position: Position = Position(x=0.0,

y=0.0)) -> bool
733 """
734 Tests to see if an entity can be placed at a given position
735 :param entity: Entity to place from inventory
736 :param direction: Cardinal direction to place entity
737 :param position: Position to place entity
738 :return: True if entity can be placed at position, else False
739 """
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740
741 craft_item(entity: Prototype, quantity: int = 1) -> int
742 """
743 Craft an item from a Prototype if the ingredients exist in your inventory.
744 :param entity: Entity to craft
745 :param quantity: Quantity to craft
746 :return: Number of items crafted
747 """
748
749 extract_item(entity: Prototype, source: Union[Position, Entity], quantity=5) -> int
750 """
751 Extract an item from an entity\’s inventory at position (x, y) if it exists on the world.
752 :param entity: Entity prototype to extract, e.g Prototype.IronPlate
753 :param source: Entity or position to extract from
754 :param quantity: Quantity to extract
755 :example extract_item(Prototype.IronPlate, stone_furnace.position, 5)
756 :example extract_item(Prototype.CopperWire, stone_furnace, 5)
757 :return The number of items extracted.
758 """
759
760 get_connection_amount(source: Union[Position, Entity, EntityGroup], target: Union[Position, Entity, EntityGroup],

connection_type: Prototype = <Prototype.Pipe: (\’pipe\’, <class \’Pipe\’>)>) -> int
761 """
762 Calculate the number of connecting entities needed to connect two entities, positions or groups.
763 :param source: First entity or position
764 :param target: Second entity or position
765 :param connection_type: a Pipe, TransportBelt or ElectricPole
766 :return: A integer representing how many entities are required to connect the source and target entities
767 """
768
769 get_entities(entities: Union[Set[Prototype], Prototype] = set(), position: Position = None, radius: float = 1000)

-> List[Entity]
770 """
771 Get entities within a radius of a given position.
772 :param entities: Set of entity prototypes to filter by. If empty, all entities are returned.
773 :param position: Position to search around. Can be a Position object or "player" for player\’s position.
774 :param radius: Radius to search within.
775 :return: Found entities
776 """
777
778 get_entity(entity: Prototype, position: Position) -> Entity
779 """
780 Retrieve a given entity object at position (x, y) if it exists on the world.
781 :param entity: Entity prototype to get, e.g Prototype.StoneFurnace
782 :param position: Position where to look
783 :return: Entity object
784 """
785
786 get_prototype_recipe(prototype: Union[Prototype, RecipeName, str]) -> Recipe
787 """
788 Get the recipe (cost to make) of the given entity prototype.
789 :param prototype: Prototype to get recipe from
790 :return: Recipe of the given prototype
791 """
792
793 get_research_progress(technology: Optional[Technology] = None) -> List[Ingredient]
794 """
795 Get the progress of research for a specific technology or the current research.
796 :param technology: Optional technology to check. If None, checks current research.
797 :return The remaining ingredients to complete the research
798 """
799
800 get_resource_patch(resource: Resource, position: Position, radius: int = 10) -> Optional[ResourcePatch]
801 """
802 Get the resource patch at position (x, y) if it exists in the radius.
803 if radius is set to 0, it will only check the exact position for this resource patch.
804 :param resource: Resource to get, e.g Resource.Coal
805 :param position: Position to get resource patch
806 :param radius: Radius to search for resource patch
807 :example coal_patch_at_origin = get_resource_patch(Resource.Coal, Position(x=0, y=0))
808 :return: ResourcePatch if found, else None
809 """
810
811 harvest_resource(position: Position, quantity=1, radius=10) -> int
812 """
813 Harvest a resource at position (x, y) if it exists on the world.
814 :param position: Position to harvest resource
815 :param quantity: Quantity to harvest
816 :example harvest_resource(nearest(Resource.Coal), 5)
817 :example harvest_resource(nearest(Resource.Stone), 5)
818 :return: The quantity of the resource harvested
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819 """
820
821 insert_item(entity: Prototype, target: Union[Entity, EntityGroup], quantity=5) -> Entity
822 """
823 Insert an item into a target entity\’s inventory
824 :param entity: Type to insert from inventory
825 :param target: Entity to insert into
826 :param quantity: Quantity to insert
827 :return: The target entity inserted into
828 """
829
830 inspect_inventory(entity=None) -> Inventory
831 """
832 Inspects the inventory of the given entity. If no entity is given, inspect your own inventory.
833 :param entity: Entity to inspect
834 :return: Inventory of the given entity
835 """
836
837 launch_rocket(silo: Union[Position, RocketSilo]) -> RocketSilo
838 """
839 Launch a rocket.
840 :param silo: Rocket silo
841 :return: Your final position
842 """
843
844 move_to(position: Position, laying: Prototype = None, leading: Prototype = None) -> Position
845 """
846 Move to a position.
847 :param position: Position to move to.
848 :return: Your final position
849 """
850
851 nearest(type: Union[Prototype, Resource]) -> Position
852 """
853 Find the nearest entity or resource to your position.
854 :param type: Entity or resource type to find
855 :return: Position of nearest entity or resource
856 """
857
858 nearest_buildable(entity: Prototype, building_box: BuildingBox, center_position: Position, **kwargs) -> BoundingBox
859 """
860 Find the nearest buildable area for an entity.
861
862 :param entity: Prototype of the entity to build.
863 :param building_box: The building box denoting the area of location that must be placeable.
864 :param center_position: The position to find the nearest area where building box fits
865 :return: BoundingBox of the nearest buildable area or None if no such area exists.
866 """
867
868 pickup_entity(entity: Union[Entity, Prototype, EntityGroup], position: Optional[Position] = None) -> bool
869 """
870 Pick up an entity if it exists on the world at a given position.
871 :param entity: Entity prototype to pickup, e.g Prototype.IronPlate
872 :param position: Position to pickup entity
873 :return: True if the entity was picked up successfully, False otherwise.
874 """
875
876 place_entity(entity: Prototype, direction: Direction = <Direction.UP: 0>, position: Position = Position(x=0.0,

y=0.0), exact: bool = True) -> Entity
877 """
878 Places an entity e at local position (x, y) if you have it in inventory.
879 :param entity: Entity to place
880 :param direction: Cardinal direction to place
881 :param position: Position to place entity
882 :param exact: If True, place entity at exact position, else place entity at nearest possible position
883 :return: Entity object
884 """
885
886 place_entity_next_to(entity: Prototype, reference_position: Position = Position(x=0.0, y=0.0), direction: Direction

= <Direction.RIGHT: 2>, spacing: int = 0) -> Entity
887 """
888 Places an entity next to an existing entity, with an optional space in-between (0 space means adjacent).
889 In order to place something with a gap, you must increase the spacing parameter.
890 :param entity: Entity to place
891 :param reference_position: Position of existing entity or position to place entity next to
892 :param direction: Direction to place entity from reference_position
893 :param spacing: Space between entity and reference_position
894 :example: place_entity_next_to(Prototype.WoodenChest, Position(x=0, y=0), direction=Direction.UP, spacing=1)
895 :return: Entity placed
896 """
897
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898 print(*args)
899 """
900 Adds a string to stdout
901 :param args:
902 :return:
903 """
904
905 rotate_entity(entity: Entity, direction: Direction = <Direction.UP: 0>) -> Entity
906 """
907 Rotate an entity to a specified direction
908 :param entity: Entity to rotate
909 :param direction: Direction to rotate
910 :example rotate_entity(iron_chest, Direction.UP)
911 :return: Returns the rotated entity
912 """
913
914 set_entity_recipe(entity: Entity, prototype: Union[Prototype, RecipeName]) -> Entity
915 """
916 Sets the recipe of an given entity.
917 :param entity: Entity to set recipe
918 :param prototype: The prototype to create, or a recipe name for more complex processes
919 :return: Entity that had its recipe set
920 """
921
922 set_research(*args, **kwargs)
923 """
924 Call self as a function.
925 """
926
927 set_research(technology: Technology) -> List[Ingredient]
928 """
929 Set the current research technology for the player\’s force.
930 :param technology: Technology to research
931 :return: Required ingredients to research the technology.
932 """
933
934 shift_entity(entity: Entity, direction: Union[Direction, Direction], distance: int = 1) -> Entity
935 """
936 Calculate the number of connecting entities needed to connect two entities, positions or groups.
937 :param source: First entity or position
938 :param target: Second entity or position
939 :param connection_type: a Pipe, TransportBelt or ElectricPole
940 :return: A integer representing how many entities are required to connect the source and target entities
941 """
942
943 sleep(seconds: int) -> bool
944 """
945 Sleep for up to 15 seconds before continuing. Useful for waiting for actions to complete.
946 :param seconds: Number of seconds to sleep.
947 :return: True if sleep was successful.
948 """
949 ‘‘‘

Example Memory

Below is an example of 2 step memory that is input to the agent. The past policies P and O are formatted like user-assistant
messages for chat models, where policies are assistant and observation is user messages. To improve the informativeness of
logs, we mask out the overall game setup prints of past policies except for the last step. This makes sure the agent doesnt
rely on past game states to make decisions

1 Assstant message
2 ‘‘‘python
3 water_pos = nearest(Resource.Water)
4 print(f"Found water source at {water_pos}")
5
6 # Place offshore pump
7 move_to(water_pos)
8 offshore_pump = place_entity(Prototype.OffshorePump, position=water_pos)
9 print(f"Placed offshore pump at {offshore_pump.position}")

10
11 boiler = place_entity_next_to(Prototype.Boiler, reference_position=offshore_pump.position, spacing = 4, direction =

Direction.RIGHT)
12 print(f"Placed boiler at {boiler.position}")
13 steam_engine = place_entity_next_to(Prototype.SteamEngine, reference_position=boiler.position, spacing = 5,

direction = Direction.RIGHT)
14 print(f"Placed steam engine at {steam_engine.position}")
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15 # Connect offshore pump to boiler with pipes
16 pump_to_boiler = connect_entities(offshore_pump.position, boiler.position, Prototype.Pipe)
17 print(f"Connected offshore pump to boiler with pipes: {pump_to_boiler}")
18
19 # Connect boiler to steam engine with pipes
20 boiler_to_engine = connect_entities(boiler.position, steam_engine.position, Prototype.Pipe)
21 print(f"Connected boiler to steam engine with pipes: {boiler_to_engine}")
22 print(f"Current inventory {inspect_inventory()}")
23 print(f"Updated entities on the map: {get_entities()}")
24 ‘‘‘
25
26 User message
27 27015: (’Found water source at x=-12.0 y=0.0’,)
28 27015: (’Placed offshore pump at x=-10.5 y=-0.5’,)
29 27015: (’Placed boiler at x=-5.0 y=-0.5’,)
30 27015: (’Placed steam engine at x=3.5 y=-0.5’,)
31 27015: (’Connected offshore pump to boiler with pipes: [
32 PipeGroup(fluid_system=1, position=x=-6.5 y=-2.5, status=EntityStatus.WORKING, pipes=[7 pipes], fluid=water)]’,)
33 27015: (’Connected boiler to steam engine with pipes: [ PipeGroup(fluid_system=3, position=x=-2.5 y=-0.5,

status=EntityStatus.EMPTY, pipes=[5 pipes])]’,)
34 27015: ("Current inventory {’wooden-chest’: 10, ’transport-belt’: 200, ’burner-inserter’: 10,

’small-electric-pole’: 200, ’pipe’: 88, ’boiler’: 3, ’steam-engine’: 1, ’burner-mining-drill’: 10,
’electric-mining-drill’: 10, ’offshore-pump’: 2, ’stone-furnace’: 5, ’assembling-machine-1’: 5, ’coal’: 200,
’stone’: 50, ’iron-ore’: 62, ’iron-plate’: 19, ’copper-plate’: 52, ’iron-gear-wheel’: 22,
’electronic-circuit’: 99}",)

35 27015: ("Updated entities on the map: <STALE_ENTITY_DATA_OMITTED>)
36
37 Assstant message
38 ‘‘‘python
39 # move to iron position
40 iron_pos = nearest(Resource.IronOre)
41 move_to(iron_pos)
42 # place a lectric mining drill
43 drill = place_entity(Prototype.ElectricMiningDrill, position = iron_pos)
44 print(f"Put a drill to mine iron at {drill.position}")
45
46 # power the drill
47 steam_engine = get_entity(Prototype.SteamEngine, position = Position(x = 3.5, y=-0.5))
48 poles = connect_entities(steam_engine,drill,Prototype.SmallElectricPole)
49 print(f"Used poles {poles} to power drill at {drill.position}")
50
51 print(f"Current inventory {inspect_inventory()}")
52 print(f"Updated entities on the map: {get_entities()}")
53 ‘‘‘
54
55 User Message
56 27015: (’Put a drill to mine iron at x=-11.5 y=19.5’,)
57 27015: (’Used poles [ElectricityGroup(id=18,

poles=[(x=-1.5,y=4.5),(x=-3.5,y=6.5),(x=3.5,y=1.5),...,(x=-9.5,y=12.5),(x=-11.5,y=14.5),(x=-13.5,y=16.5)],
voltage=0)] to power drill at x=-11.5 y=19.5’,)

58 27015: ("Current inventory {’wooden-chest’: 10, ’transport-belt’: 200, ’burner-inserter’: 10,
’small-electric-pole’: 191, ’pipe’: 88, ’boiler’: 3, ’steam-engine’: 1, ’burner-mining-drill’: 10,
’electric-mining-drill’: 9, ’offshore-pump’: 2, ’stone-furnace’: 5, ’assembling-machine-1’: 5, ’coal’: 200,
’stone’: 50, ’iron-ore’: 62, ’iron-plate’: 19, ’copper-plate’: 52, ’iron-gear-wheel’: 22,
’electronic-circuit’: 99}",)

59 27015: ("Updated entities on the map: [
60 OffshorePump(name=’offshore-pump’, position=Position(x=-10.5, y=-0.5), direction=Direction.RIGHT, energy=0.0,

tile_dimensions=TileDimensions(tile_width=1.0, tile_height=1.0), status=EntityStatus.WORKING,
connection_points=[Position(x=-9.5, y=-0.5)], fluid_box=[{’name’: ’water’, ’amount’: 100, ’temperature’: 15}],
fluid_systems=[49]),

61 Boiler(fuel={}, name=’boiler’, position=Position(x=-5.0, y=-0.5), direction=Direction.RIGHT, energy=0.0,
tile_dimensions=TileDimensions(tile_width=3.0, tile_height=2.0), warnings=[’out of fuel’],
status=EntityStatus.NO_FUEL, connection_points=[Position(x=-5.5, y=-2.5), Position(x=-5.5, y=1.5)],
fluid_box=[{’name’: ’water’, ’amount’: 200, ’temperature’: 15}], fluid_systems=[49],
steam_output_point=Position(x=-3.0, y=-0.5)),

62 Generator(electrical_id=18, name=’steam-engine’, position=Position(x=3.5, y=-0.5), direction=Direction.RIGHT,
energy=0.0, tile_dimensions=TileDimensions(tile_width=3.0, tile_height=5.0), warnings=[’not receiving
electricity’, ’no input liquid’, ’No fluid present in connections’], status=EntityStatus.NOT_CONNECTED,
connection_points=[Position(x=6.0, y=-0.5), Position(x=1.0, y=-0.5)], fluid_box=[], fluid_systems=[]),

63 ElectricMiningDrill(electrical_id=18, name=’electric-mining-drill’, position=Position(x=-11.5, y=19.5),
direction=Direction.UP, energy=0.0, tile_dimensions=TileDimensions(tile_width=3.0, tile_height=3.0),
warnings=[’not receiving electricity’], status=EntityStatus.NO_POWER, drop_position=Position(x=-11.5, y=17.5)),

64 PipeGroup(fluid_system=49, position=x=-6.5 y=-2.5, status=EntityStatus.FULL_OUTPUT, pipes=[7 pipes], fluid=water),
65 PipeGroup(fluid_system=51, position=x=-2.5 y=-0.5, status=EntityStatus.EMPTY, pipes=[5 pipes]),
66 ElectricityGroup(id=18,

poles=[(x=-1.5,y=4.5),(x=-3.5,y=6.5),(x=3.5,y=1.5),...,(x=-9.5,y=12.5),(x=-11.5,y=14.5),(x=-13.5,y=16.5)],
voltage=0)]",)
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